预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种基于稀疏降维的STAP方法 Title:SparseDimensionalityReduction-BasedSpace-TimeAdaptiveProcessing(STAP)Method Abstract: Space-TimeAdaptiveProcessing(STAP)isapowerfultechniqueusedfortargetdetectionandtrackinginairborneradarsystems.However,STAPoftenfaceschallengesofhighcomputationalcomplexityandthepresenceofinterferenceclutter.Inrecentyears,therehasbeenincreasinginterestinleveragingsparsedimensionalityreductiontechniquestoenhanceSTAPperformance.Thispaperpresentsareviewoftheexistingliteratureandproposesanovelsparsedimensionalityreduction-basedSTAPmethod.Theproposedmethodaimstoeffectivelyreducecomputationalburdenandmitigateinterferenceclutterwhilemaintainingtargetdetectionandtrackingaccuracy. 1.Introduction Space-TimeAdaptiveProcessing(STAP)isasignalprocessingtechniquewidelyusedinairborneradarsystemsfordetectingandtrackingtargetsinthepresenceofsevereclutterinterference.TraditionalSTAPmethodstypicallyrequirealargenumberoftrainingdatasamplesandhavehighcomputationalcomplexity.SparsedimensionalityreductiontechniquesofferapromisingsolutiontoaddressthesechallengesbyreducingthedimensionalityoftheSTAPdatawhileretainingtheimportantinformationnecessaryfortargetdetectionandtracking. 2.Background ThissectionprovidesacomprehensiveoverviewoftheconventionalSTAPtechniques,includingthebasicprinciples,challengesencountered,andpotentiallimitations.TheimportanceofdimensionalityreductioninSTAPisemphasized,leadingtothemotivationforexploringsparsedimensionalityreductionmethods. 3.SparseDimensionalityReductionTechniques Thissectionpresentsanin-depthdiscussionofvarioussparsedimensionalityreductiontechniquesthathavebeensuccessfullyappliedindifferentdomains.ThetechniquescoveredincludePrincipalComponentAnalysis(PCA),SparsePrincipalComponentAnalysis(SPCA),IndependentComponentAnalysis(ICA),andFactorAnalysis(FA).Thestrengths,weaknesses,andsuitabilityofeachtechniqueforSTAPapplicationsarediscussed. 4.SparseDimensionalityReduction-BasedSTAPMethod Inthissection,theproposedsparsedimensionalityreduction-basedSTAPmetho