预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

大数据环境下的分布式数据流实时处理技术研究(英文) Title:ResearchonReal-timeProcessingTechniquesforDistributedDataStreamingintheBigDataEnvironment Abstract: Theadventofbigdatahasgivenrisetonewchallengesinprocessingvastamountsofdatainreal-time.Thisresearchfocusesonexploringthetechniquesforreal-timeprocessingofdistributeddatastreamsinthebigdataenvironment.Thepaperdiscussestheimportanceofreal-timeprocessingandtheimpactofbigdataontraditionalbatchprocessing.Varioustechniquesfordistributingdatastreams,processingframeworks,andalgorithmsareanalyzed.Theobjectiveistoidentifythemostefficientandscalabletechniquesthatcanbeappliedtohandlereal-timescenariosinthebigdataenvironment. 1.Introduction: 1.1Background: Withtheexponentialgrowthofdatasizeinrecentyears,traditionaldataprocessingmethodsarenolongersufficienttohandlethemassiveinfluxofdata.Real-timeprocessingofdatastreamshasbecomeacriticalrequirementformanyapplicationssuchassocialmediaanalytics,financialfrauddetection,IoTdataanalysis,etc.Traditionalbatchprocessingmethodsfallshortinaddressingthesereal-timedemands. 1.2Objective: Theobjectiveofthisresearchistoexplorethevarioustechniquesandframeworksavailableforreal-timeprocessingofdistributeddatastreamsinthebigdataenvironment.Thescalability,efficiency,andfault-toleranceofthesetechniquesareevaluatedtoidentifythemostsuitableapproaches. 2.Real-timeProcessingChallengesinBigDataEnvironment: 2.1VolumeandVelocity: Thebigdataenvironmentischaracterizedbymassivevolumesofdatabeinggeneratedathighvelocities.Real-timeprocessingtechniquesshouldbecapableofhandlingthisdatadelugeefficiently. 2.2Variety: Datastreamingapplicationsdealwithdiversedatatypessuchasstructured,semi-structured,andunstructureddata.Techniquesforhandlingthisvarietyofdataneedtobeconsidered. 2.3ScalabilityandFault-tolerance: Real-timeprocessingshouldscalehorizontallytohandleincreasingdatavolumesandaccommodatehigherprocessingloads.Fault-tolerantmechanismsareessentialtoensureuninterruptedprocessing. 3.DistributedDataStreamingTechniques: 3.1DataPartitioning: