预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

专题:力的正交分解法 1、定义:把力沿着两个选定的互相垂直的方向分解,叫做力的正交分解法。 说明:正交分解法是一种很有用的方法,尤其适于物体受三个或三个以上的共点力作用的情怳。 2、正交分解的原理 一条直线上的两个或两个以上的力,其合力可由代数运算求得。当物体受到多个力的作用,并且这几个力只共面不共线时,其合力用平行四边形定则求解很不方便。为此,我们建立一个直角坐标系,先将各力正交分解在两条互相垂直的坐标轴上,求x、y轴上的合力Fx,Fy Fx=FX1+FX2+FX3+、、、 FY=FY1+FY2+FY3+、、、 ④最后求Fx和Fy的合力F大小: 方向(与Y方向的夹角): 分别求出两个不同方向上的合力Fx和Fy,然后就可以由F合=,求合力了。 说明:“分”的目的是为了更方便的“合” 正交分解与常规力的分解的区别:正交分解与力的分解不同的是不是按照力的作用效果分解,而是把力分解成相互垂直的两个分力,任然按照平行四边形定则分解。 基本思想:等效替代。 正交分解法的步骤: (1)以力的作用点为原点作直角坐标系,标出x轴和y轴,如果这时物体处于平衡状态,则两轴的方向可根据方便自己选择。 (2)将与坐标轴不重合的力分解成x轴方向和y轴方向的两个分力,并在图上标明,用符号Fx和Fy表示。 (3)在图上标出力与x轴或力与y轴的夹角,然后列出Fx、Fy的数学表达式。如:F与x轴夹角为θ,则Fx=Fcosθ,Fy=Fsinθ。与两轴重合的力就不需要分解了。 (4)列出x轴方向上的各分力的合力和y轴方向上的各分力的合力的两个方程,然后再求解。 三个力共同作用在O点,如图6所示,F1、F2与F3之间的夹角均为600,求合力。 图6 F1 F2 F3 解析:此题用正交分解法既准确又简便,以O点为原点,F1为x轴建立直角坐标; (1)分别把各个力分解到两个坐标轴上,如图7所示: (2)然后分别求出x轴和y轴上的合力 F1 F2X F2 F3 F3X F2y F3y O X y 图7 (3)求出Fx和Fy的合力既是所求的三个力的合力如图8所示。 x y F FX FY O 图8 ,则合力与F1的夹角为600 运用正交分解法解题时,x轴和y轴方向的选取要根据题目给出的条件合理选取,即让受力物体受到的各外力尽可能的与坐标轴重合,这样方便解题。 运用正交分解法解平衡问题时,根据平衡条件F合=0,应有ΣFx=0,ΣFy=0,这是解平衡问题的必要和充分条件,由此方程组可求出两个未知数。 重100N光滑匀质球静止在倾角为37º的斜面和与斜面垂直的挡板间, 求斜面和挡板对球的支持力F1,F2。 解:选定如图3所示的坐标系,重球受力如图3所示。由于球静止,所 以有: 图3