预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于高斯小波变换的测井曲线自动分层模型 Title:AnAutomaticLayeringModelforWellLoggingCurvesbasedontheGaussianWaveletTransform Abstract: Theinterpretationofwellloggingcurvesplaysacrucialroleintheoilandgasindustry,providingvaluableinformationforreservoircharacterization.However,manualinterpretationisatime-consumingandsubjectiveprocess,leadingtopotentialerrorsandinconsistencies.Inthispaper,weproposeanautomaticlayeringmodelforwellloggingcurvesbasedontheGaussianwavelettransform.Themodelaimstoimprovetheaccuracyandefficiencyoftheinterpretationprocess,ultimatelyenhancingreservoircharacterizationanddecision-making. 1.Introduction Wellloggingisanessentialtechniqueusedinthepetroleumindustrytoobtaindetailedinformationaboutsubsurfaceformations.Theseloggingcurves,representingtheresponseofdifferentmeasurementstothegeologicformation,providevaluableinsightsintolithology,porosity,fluidsaturation,andotherproperties.However,themanualinterpretationofwellloggingcurvesissubjective,time-consuming,andpronetohumanerrors.Therefore,theneedforautomatedalgorithmstoaccuratelyinterpretwellloggingcurveshasbecomeincreasinglyimportant. 2.GaussianWaveletTransform TheGaussianwavelettransformisapowerfulsignalprocessingtechniquethatdecomposesasignalintoitsfrequencycomponents.Ithasbeensuccessfullyappliedinvariousfields,includingimageprocessingandpatternrecognition.ByapplyingtheGaussianwavelettransformtowellloggingcurves,wecanidentifyvariousfrequencycomponentsrelatedtodifferentformationsorlayers. 3.Methodology Theproposedautomaticlayeringmodelconsistsofthefollowingsteps: 3.1Preprocessing Initially,thewellloggingcurvesarepreprocessedtoremovenoiseandinconsistenciescausedbyloggingtoolsandenvironmentalfactors.Commonpreprocessingtechniquessuchasmedianfilteringandnormalizationareemployedtoenhancethequalityofthedata. 3.2GaussianWaveletTransform ThepreprocessedwellloggingcurvesarethendecomposedusingtheGaussianwavelettransform.Thistransformbreaksdownthesignalintodifferentfrequencycomponents,revealinghiddenpatternsandfeaturesinthecurves