预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

增强现实场景下移动边缘计算资源分配优化方法 Title:OptimizationofResourceAllocationinEdgeComputingforAugmentedRealityApplications Abstract: Asaugmentedreality(AR)technologiescontinuetoevolve,thereisagrowingneedtoefficientlyallocatecomputingresourcesinedgecomputingenvironmentstosupportARapplications'real-timeprocessingrequirements.ThispaperproposesanoptimizationmethodforresourceallocationinedgecomputingtoenhancetheperformanceanduserexperienceofARapplications.Theobjectiveistominimizelatencyandmaximizethroughputwhileconsideringtheconstraintsoflimitedcomputationalpowerandnetworkbandwidthinedgedevices.TheproposedapproachleveragesmachinelearningalgorithmsanddynamicresourcemanagementtechniquestoachieveefficientresourceallocationinARscenarios. 1.Introduction Withtherapiddevelopmentofaugmentedreality(AR),real-timeprocessingandlow-latencycommunicationarecriticalfordeliveringseamlessARexperiences.However,client-serverarchitecturesorcloud-basedcomputingmodelsoftenintroducehighnetworklatencyanddependencyonnetworkstability,underminingthepotentialofARapplications.Toaddressthesechallenges,edgecomputingemergesasapromisingparadigmthatbringscomputationclosertothedatasource,reducinglatencyandimprovingresponsiveness.ThispaperfocusesonresourceallocationoptimizationinedgecomputingforARscenarios. 2.ResourceAllocationChallengesinEdgeComputingforAR InanARenvironment,mobiledevicesactastheendpointforARexperiences,capturingandrenderingdigitalcontentinreal-time.However,thesedevicestypicallyhavelimitedcomputationalpowerandrelyonedgeresourcestooffloadprocessingtasks.Thechallengesinresourceallocationincludedynamicallyprovisioningcomputingresources,offloadingcomputationtothemostsuitableedgeservers,optimizingnetworkcommunication,andadaptingtodynamicapplicationrequirements. 3.ProposedOptimizationMethod Theproposedoptimizationmethodconsistsofthefollowingsteps: 3.1.ResourceDemandPrediction:MachinelearningalgorithmsareemployedtopredictthecomputationalresourcedemandsofARapplicationsbasedonhistoricalusagepatterns,applicationchar