预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于深度学习与随机森林的高维数据特征选择 I.Introduction Therapiddevelopmentoftechnologyhasledtothegenerationofmassivehigh-dimensionaldata,whichposessignificantchallengestodataanalysis.Featureselection,asanessentialstepindatapreprocessing,aimstoselectrelevantfeaturesandremoveredundantornoisyfeaturesfromtheoriginaldataset,whichcanimprovetheaccuracyandefficiencyofsubsequentanalysistasks.Inrecentyears,deeplearningandrandomforesthavebeenwidelyusedinfeatureselectionduetotheirpowerfulfeaturerepresentationandselectionabilities.Thispaperprovidesacomprehensiveoverviewofthehigh-dimensionaldatafeatureselectionmethodsbasedondeeplearningandrandomforest. II.FeatureSelection Featureselectionisaprocessofselectingasubsetofrelevantfeaturesfromtheoriginalfeaturespace,whichcanimprovetheaccuracyandefficiencyofsubsequentanalysistasks.Therearethreemaincategoriesoffeatureselectionmethods:filtermethods,wrappermethods,andembeddedmethods. Filtermethodsrankfeaturesbasedonacertaincriterion,suchascorrelationcoefficient,mutualinformation,orvariance.Wrappermethodsevaluatetheperformanceofasubsetoffeaturesbyusingamachinelearningalgorithmandsearchfortheoptimalfeaturesubsetthroughaheuristicsearchalgorithm.Embeddedmethodsincorporatefeatureselectionintothemachinelearningalgorithmandselectfeaturesduringthetrainingprocess. III.DeepLearning-basedFeatureSelection Deeplearning,withitspowerfulfeaturerepresentationability,hasbeenwidelyusedinvariousdataanalysistasks,includingfeatureselection.Thereareseveraldeeplearning-basedfeatureselectionmethods,includingautoencoder-basedfeatureselection,sparsecoding-basedfeatureselection,anddeepbeliefnetwork-basedfeatureselection. Autoencoder-basedfeatureselectionconstructsadeepneuralnetworkwithanencoderandadecoder.Theencodermapstheinputfeaturestoalow-dimensionallatentspace,andthedecodermapsthelatentfeaturesbacktotheoriginalfeaturespace.Theautoencoderistrainedtominimizethereconstructionerrorbetweentheoriginalfeaturesandthereconstructedfeatures.Thefeatureswithsmallreconstructionerrorsareselecteda