预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于残差自回归与Kalman滤波的天然气消费量组合预测研究(英文) ResearchonNaturalGasConsumptionCombiningResidualAutoregressionandKalmanFiltering Abstract: Forecastingnaturalgasconsumptionaccuratelyplaysacrucialroleinenergymanagementanddecision-making.Thispaperproposesacombinedforecastingapproachthatintegratesresidualautoregression(RAR)andKalmanfilteringtopredictnaturalgasconsumption.TheRARmodelisemployedtocapturethenonlinearpatternsofhistoricalconsumptiondata,whiletheKalmanfilterisutilizedtoincorporatereal-timeobservationsandupdatetheforecastedvalues.Theexperimentalresultsdemonstratethattheproposedapproachoutperformstraditionalforecastingmethodsintermsofaccuracyandstability.Thefindingsprovidevaluableinsightsforenergymanagersandpolicy-makersinoptimizingnaturalgasconsumption. 1.Introduction Theaccuratepredictionofnaturalgasconsumptionisessentialforeffectiveenergymanagementandpolicy-making.Understandingthetrendsandpatternsingasconsumptionassistsinoptimizingsupplyanddemandmanagement,pricingstrategies,andinfrastructureplanning.Traditionalforecastingmethods,suchastimeseriesanalysisandregressionmodels,havelimitationsincapturingthecomplexnonlinearitiesanddynamicspresentinnaturalgasconsumptiondata,especiallyinthepresenceofexternalshocks. 2.RelatedWork Numerousstudieshaveappliedvariousforecastingtechniquestopredictnaturalgasconsumption.Timeseriesmodels,includingautoregressiveintegratedmovingaverage(ARIMA)andseasonaldecompositionoftimeseries(STL),havebeenwidelyused.However,thesemodelsoftenfailtocapturethecomplexitiesofgasconsumptiondynamics,leadingtoinaccurateforecasts.Otherapproaches,suchasartificialneuralnetworks(ANN)andsupportvectormachines(SVM),attempttoovercometheselimitationsbuthavedifficultiesinexplainingtheunderlyingprocesses. 3.Methodology Thisresearchproposesacombinedapproachthatintegratesresidualautoregression(RAR)andKalmanfiltering.TheRARmodelcapturesthenonlinearpatternsofhistoricalgasconsumptionbymodelingtheresidualsofanautoregressiveprocess.TheresidualsarethenusedasinputstotheKalmanfilter,whi