预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于支持向量机的英文字符识别研究 Introduction: SupportVectorMachine(SVM)isapopularmachinelearningtechniquethathasbeenusedinthefieldofpatternrecognition.Itisasupervisedlearningalgorithmthatcanclassifydatabyfindingthebesthyperplaneinthefeaturespacethatseparatesdifferentclassesofdatapoints.Englishcharacterrecognitionisoneofthemostfundamentalapplicationsofpatternrecognition,andSVMhasbeenproventobeeffectiveinthisarea.Inthispaper,wewillexploretheresearchonSVM-basedEnglishcharacterrecognitionanddiscussitssignificanceandlimitations. Background: SVM-basedcharacterrecognitionhasalonghistoryandhasbeenwidelyusedforhandwritingrecognition,opticalcharacterrecognition,andotherapplications.Theinputtothealgorithmisasetoffeaturesextractedfromtheimageofthecharacter,andtheoutputistheclassificationofthecharacter.Thefeatureextractionprocessiscritical,asitdeterminestheperformanceofthealgorithm.Variousfeatureextractiontechniqueshavebeenproposed,includingFourierdescriptors,Zernikemoments,andGaborfilters. Methodology: SeveralstudieshavebeenconductedonSVM-basedEnglishcharacterrecognitionusingdifferentfeatureextractiontechniques.Forexample,astudyconductedbyJiangetal.[1]usedZernikemomentsforfeatureextractionandachievedanaccuracyof97.74%.AnotherstudybyLimetal.[2]usedGaborfiltersandachievedanaccuracyof98.3%.Inaddition,Dohareetal.[3]usedacombinationofFourierdescriptorsandshapefeaturesandachievedanaccuracyof99%. Discussion: SVM-basedEnglishcharacterrecognitionhasseveraladvantages.SVMiscapableofhandlinghigh-dimensionaldata,whichisimportantforfeatureextraction.SVMisalsoarobustalgorithmthatcanhandledatawithoutliersandnoise.Inaddition,SVMhasgoodgeneralizationability,whichmeansthatitcanperformwellonnew,unseendata.Despitetheseadvantages,SVMhassomelimitations.Theperformanceofthealgorithmishighlydependentonthequalityofthefeatureextractionprocess,whichcanbeachallengingtask.Moreover,theSVMalgorithmiscomputationallyexpensive,whichcanbeaproblemwhendealingwithlargedatasets. Conclusion: SVM-basedEnglishcharacterrecognitionisapow