预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于梯度提升决策树的高速公路行程时间预测模型(英文) Title:PredictingHighwayTravelTimewithGradientBoostingDecisionTrees Abstract: Highwaytraveltimepredictionhasvitalimplicationsfortransportationmanagement,routeplanning,anddriverdecision-making.ThispaperproposesapredictivemodelforhighwaytraveltimebasedonGradientBoostingDecisionTrees(GBDT).GBDTisapowerfulensemblelearningtechniquethatcombinesmultipledecisiontreestoimprovepredictionaccuracyandgeneralizationcapabilities.Throughtheintegrationofhistoricaltrafficdataandvariousrelevantfeatures,thismodelaimstoaccuratelyforecasthighwaytraveltime,providingvaluableinsightstodriversandtransportationauthorities. 1.Introduction: Highwaytraveltimepredictionservesasacriticaltoolinmoderntransportationsystems.Accuratepredictionsoftraveltimehelpinoptimizingrouteplanningandensuringsmoothertrafficflow.Traditionalapproaches,suchaslinearregressionmodels,havelimitationsincapturingthecomplexnonlinearrelationshipsbetweeninputvariablesandtraveltime.Consequently,thispaperproposesaGBDT-basedpredictivemodeltoaddressthesechallengesandprovidemoreaccuratepredictions. 2.RelatedWork: Previousstudieshaveutilizedvarioustechniquesfortraveltimeprediction,includingneuralnetworks,randomforests,andsupportvectorregression.However,thesemethodsmaysufferfromoverfitting,limitedcapabilitytocapturecomplexinteractions,orrequireextensivehyperparametertuning.TheGBDTapproachhasproveneffectiveinaddressingtheseissuesandhasbeensuccessfullyappliedinvariousdomains. 3.Methodology: 3.1DataCollectionandPre-processing: Toconstructaneffectivepredictivemodel,acomprehensivedatasetcontaininghistoricaltraveltimerecordsisrequired.Thisdatasetshouldincludevariablessuchasweatherconditions,timeofday,dayoftheweek,roadconditions,andtrafficflow.Datapre-processingtechniques,includingoutlierremoval,missingvalueimputation,andfeaturescaling,areappliedtoensuredataqualityandmodelefficiency. 3.2GradientBoostingDecisionTrees: GBDTisanensemblelearningmethodthatcombinesmultipledecisiontreestogeneratepowerfulpredictivemodels.It