预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于改进VGG卷积神经网络的前方车辆目标检测 Title:ImprovingVehicleObjectDetectionUsingEnhancedVGGConvolutionalNeuralNetwork Abstract: Vehicleobjectdetectionplaysavitalroleinautonomousdriving,advanceddriverassistancesystems(ADAS),andtrafficmonitoring.Inthispaper,weproposeanenhancedVGGConvolutionalNeuralNetwork(CNN)modelforvehicleobjectdetection.Ourapproachaimstoimprovebothaccuracyandefficiencyindetectingvehicles,therebycontributingtowardssaferandmoreefficienttransportationsystems. 1.Introduction Vehicleobjectdetectionisachallengingtaskduetovariousfactorssuchasocclusion,posevariation,andvaryinglightingconditions.ConvolutionalNeuralNetworks(CNNs)haveachievedsignificantsuccessesincomputervisiontasks,includingobjectdetection.VGG(VisualGeometryGroup)isawidelyusedCNNarchitecture,knownforitssimplicityandeffectiveness.However,thereisstillroomforimprovementtoenhanceitsperformanceinvehicleobjectdetection. 2.RelatedWork Priorresearchhasproposedseveralapproachestoimprovevehicleobjectdetectionperformance.Theseincludeusingregionproposalalgorithms,featurefusionmethods,andmulti-scaleapproaches.Despitetheseadvancements,theaccuracyandefficiencyofexistingvehicledetectionmethodscanstillbeimproved. 3.EnhancedVGGCNNArchitecture Inourproposedapproach,weintroduceenhancementstotheVGGCNNarchitecturetoimprovevehicleobjectdetection.Specifically,wemakemodificationsintheinputsize,numberoffeaturemaps,andtheadditionofbatchnormalizationlayers.Theseenhancementsaimtocapturemoredetailedinformationandreduceoverfitting,therebyenhancingthemodel'sperformanceindetectingvehicles. 4.DatasetPreparation Weutilizealarge-scaledatasetwithannotatedvehicleobjectsfortrainingandevaluatingourenhancedVGGCNNmodel.Thedatasetcontainsadiverserangeofvehicleimagescapturedfromvariousviewpoints,lightingconditions,andenvironmentalsettings.Dataaugmentationtechniques,suchasrandomimagerotation,translation,andscaling,areappliedtoincreasethevariabilityoftrainingsamplesandimprovegeneralization. 5.ModelTrainingandOptimization Weemployatransferlearningappro