基于时间序列ARIMA模型的电力负荷短期预测分析.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于时间序列ARIMA模型的电力负荷短期预测分析.docx
基于时间序列ARIMA模型的电力负荷短期预测分析时间序列ARIMA模型在电力负荷短期预测中的应用摘要:电力负荷预测是电力系统运营和规划的重要组成部分。准确地预测电力负荷对于优化电力资源配置、提高电力系统的安全性和经济性具有重要意义。时间序列ARIMA模型是一种常用的预测方法,本文主要探讨了ARIMA模型在电力负荷短期预测中的应用,并通过实际数据进行了验证。1.引言电力系统的负荷预测是电力系统规划和运营中的关键问题。准确地预测电力负荷可以帮助电力公司合理配置电力资源,制定高效的电力调度方案,提高电力系统的安
基于时间序列分析的ARIMA模型分析及预测.docx
基于时间序列分析的ARIMA模型分析及预测时间序列分析是一种在金融、经济、管理、物流等领域广泛应用的分析方法。ARIMA(AutoregressiveIntegratedMovingAverage)模型是其中一种常用的时间序列分析模型。本文将对ARIMA模型进行分析,并使用其进行预测。一、ARIMA模型介绍1.1AR模型AR(Autoregressive)模型是一种时间序列模型,它基于过去某一时间点的值来预测未来的值。一个AR(p)模型可以表示为:Yt=α1Yt-1+α2Yt-2+…+αpYt-p+εt其
基于时间序列线性数学模型的电力系统短期负荷预测.docx
基于时间序列线性数学模型的电力系统短期负荷预测电力系统的短期负荷预测在电力调度和运营中起着至关重要的作用。准确地预测电力负荷可以帮助电力系统运营商合理安排电力供应,提高电力系统的运行效率和可靠性。而时间序列线性数学模型是一种常用的负荷预测方法,具有较好的预测准确度和简单易用的特点,因此在电力系统负荷预测中得到了广泛应用。时间序列是指一系列按照时间顺序排列的观测数据,电力系统负荷数据也可以看作是一种时间序列数据。时间序列线性数学模型是建立在时间序列数据的基础上,通过对历史负荷数据进行分析和建模,利用线性关系
基于ARIMA模型算法的频谱时间序列预测分析.docx
基于ARIMA模型算法的频谱时间序列预测分析随着工业化和信息化的快速发展,人们对能量的需求也逐渐增加,而频谱时间序列预测分析技术在能源领域中得到了广泛应用。其中,基于ARIMA模型算法的预测方法是一种常用的技术。本文将介绍ARIMA模型算法和频谱时间序列预测分析的基本概念,并探讨ARIMA模型算法在此类问题中的应用,最后从实验中得出结论。一、ARIMA模型算法简介ARIMA(AutoregressiveIntegratedMovingAverage)模型是一种常用的时间序列分析方法。它是在时间序列上建立自
基于时间序列分析模型的非稳定电力负荷预测方法和系统.pdf
本申请提供一种基于时间序列分析模型的非稳定电力负荷预测方法和系统,所述方法包括:用经验小波分解方法将非平稳的原始序列分解为一组平稳的子序列,分解后的所述子序列呈现出从低频到高频的特点,各频段的子序列具有相同的特征,且具有平稳性;将所述子序列的数据重构后按照从低频到高频的顺序依次送入Autoformer模型中进行预测;将各子序列的预测结果进行整合,得到原始序列的最终预测结果。进一步提高电力负荷预测的精准度,从而可以经济合理地安排电网内部发电机组的启停,保持电网运行的安全稳定性。本申请为EWT和Autofor