预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于改进BBO算法优化KELM的短期风电功率预测 Title:Short-TermWindPowerPredictionBasedonImprovedBBOAlgorithmOptimizingKELM Abstract: Accuratelypredictingwindpowergenerationiscrucialforefficientintegrationandutilizationofrenewableenergysources.ThispaperproposesanimprovedapproachtoenhancetheperformanceoftheKernelExtremeLearningMachine(KELM)algorithmforshort-termwindpowerprediction.TheproposedmethodcombinestheoptimizationcapabilitiesoftheBiogeography-BasedOptimization(BBO)algorithmwiththeKELMmodel,providingamoreaccurateandreliablepredictionmodelforwindpowergeneration.Experimentalresultsdemonstratetheeffectivenessoftheproposedmethodintermsofpredictionaccuracyandreliability. 1.Introduction: 1.1Background: Withtheincreasingdemandforsustainableandcleanenergysources,windpowerhasgainedconsiderableattention.However,theinherentuncertaintyandvariabilityofwindpowergenerationposechallengesforpowersystemoperators.Accurateshort-termwindpowerpredictionisessentialforeffectivegridintegrationandmanagement. 1.2Motivation: Existingpredictionmodelsoftenfacechallengesincapturingthecomplexnonlinearpatternsinwindpowergeneration.Therefore,thispaperproposesanimprovedBBOoptimizationmethodforenhancingtheperformanceoftheKELMalgorithm,toaddressthelimitationsoftraditionalwindpowerpredictionmodels. 2.Methodology: 2.1KernelExtremeLearningMachine(KELM): KELMisarobustmachinelearningalgorithmthathasshownpromisingresultsinvariousfields.Itssimplicityandhighcomputationalefficiencymakeitsuitableforapplicationswithlarge-scaledataset,suchaswindpowerprediction. 2.2Biogeography-BasedOptimization(BBO)Algorithm: BBOisapopulation-basedoptimizationalgorithminspiredbytheprocessofbiogeography.Itemulatesthemigrationbehaviorofspeciestosearchfortheoptimalsolutioninagivenproblem.Here,BBOisusedtooptimizetheparametersoftheKELMalgorithm,improvingitspredictionaccuracy. 2.3ProposedApproach: Theproposedapproachconsistsoftwomainsteps.First,theBBOalgorithmisemployedtooptimizetheKELMmodelparameters,suchasthenumberofhiddennodes,learningrate,andregular