预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于最小二乘小波支持向量机的股指波动率预测 Title:PredictingStockIndexVolatilityBasedonLeastSquaresWaveletSupportVectorMachines Abstract: Stockindexvolatilitypredictionisofcrucialimportanceinfinancialmarketsforinvestorsandtraders.Inthisstudy,weproposeanovelmethodforforecastingstockindexvolatilitybasedonthecombinationofleastsquareswaveletanalysisandsupportvectormachines(SVMs).Theproposedapproachaimstocapturethenonlinearandnon-stationarycharacteristicsofstockmarketvolatility,allowingformoreaccuratepredictions.Empiricalresultsdemonstratetheeffectivenessofthemethodinimprovingvolatilityforecastingaccuracycomparedtotraditionalmodels. 1.Introduction Stockmarketvolatilityrepresentsthedegreeofpricefluctuationinfinancialmarkets,whichisessentialforinvestorswhenmakinginvestmentdecisionsandmanagingrisk.Accuratepredictionofstockindexvolatilityiscrucialformarketparticipantstooptimizetheirstrategiesandmaximizereturns.Traditionalmodelsforvolatilityprediction,suchasautoregressiveintegratedmovingaverage(ARIMA)andgeneralizedautoregressiveconditionalheteroskedasticity(GARCH),havelimitationsincapturingthenonlinearandnon-stationarynatureoffinancialtimeseriesdata.Toovercometheselimitations,weproposeanovelapproachbasedonleastsquareswaveletanalysisandsupportvectormachines. 2.Methodology 2.1.WaveletAnalysis Waveletanalysisisamathematicaltoolthatdecomposesasignalintodifferentfrequencycomponents,allowingforthedetectionofpatternsorfeaturesatdifferentscales.Inthisstudy,weusethediscretewavelettransform(DWT)todecomposethestockindexvolatilitytimeseriesintoapproximationanddetailcoefficients.TheDWTprovidesamultiscalerepresentationofthedata,whichenablestheidentificationofbothlong-termtrendsandshort-termfluctuations. 2.2.LeastSquaresWaveletSupportVectorMachines Leastsquareswaveletsupportvectormachines(LSWSVM)combinetheadvantagesofwaveletanalysisandSVMsforimprovedvolatilityprediction.LSWSVMutilizeswaveletcoefficientsasinputfeaturestobuildaregressionmodelusingSVMs.Theleastsquaresoptimizationtechniqueisemployedtoincorporatethet