预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于加权二部图的SlopeOne推荐算法 Title:SlopeOneRecommenderAlgorithmbasedonWeightedBipartiteGraph Abstract: Withthecontinuousgrowthofonlineinformation,theneedforpersonalizedandaccuraterecommendationshasbecomecrucial.SlopeOnerecommendationalgorithmhasproventobeeffectiveingeneratingpersonalizedrecommendationsbyleveraginguserratings.Inthispaper,weproposeanenhancedversionoftheSlopeOnealgorithmbasedonaweightedbipartitegraphapproach.Thealgorithmutilizesaweightedbipartitegraphtomodeltherelationshipsbetweenusersanditems,whichimprovesrecommendationqualitybytakingintoaccountbothusersimilaritiesanditemsimilarities.ExperimentalresultsdemonstratethattheproposedalgorithmachievesbetterrecommendationperformancecomparedtothetraditionalSlopeOnealgorithm. 1.Introduction: Therapiddevelopmentofe-commerceandcontentstreamingplatformshasmadeitchallengingforuserstodiscoverrelevantandpersonalizedinformation.Recommendersystemsaimtoaddressthischallengebyprovidinguserswithtailoredrecommendationsbasedontheirpreferencesandbehaviors.Collaborativefiltering(CF)isoneofthemostwidelyusedtechniquesinrecommendersystems.AmongCFalgorithms,SlopeOnehasgainedpopularityduetoitssimplicityandeffectiveness.However,theoriginalSlopeOnealgorithmdoesnotconsidertherelationshipsbetweenusersanditems,whichmaylimititsrecommendationaccuracy.Therefore,thereisaneedtoenhancetheSlopeOnealgorithmtoprovidemoreaccuraterecommendations. 2.RelatedWork: SeveralstudieshaveproposedmodificationstotheSlopeOnealgorithmtoimproveitsperformance.Forexample,WeightedSlopeOneincorporatesconfidenceweightstohandlesparseandunreliabledata.ImprovingtheaccuracyandscalabilityofSlopeOnehasalsobeenexploredbyintroducingmatrixfactorizationtechniquesandneighborhood-basedapproaches.However,thesemethodstendtobecomputationallyexpensiveandmaynotscalewellwithlargedatasets. 3.ProposedMethod: Inthispaper,weproposeanovelapproachtoenhancetheSlopeOnealgorithmusingaweightedbipartitegraph.Thealgorithmleveragesbothusersimilaritiesanditemsimilaritiestoimproverecommendationquality.The