预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于南京地铁AFC数据的大客流识别方法(英文) Title:LargePassengerFlowDetectionMethodBasedonNanjingMetroAFCData Abstract: Withtherapiddevelopmentofurbanization,theissueoflargepassengerflowmanagementinurbanmetrosystemshasbecomeincreasinglyimportant.ThisstudyaimstoproposeamethodfordetectinglargepassengerflowsbasedonAutomatedFareCollection(AFC)dataintheNanjingmetrosystem.Theproposedmethodutilizesdataminingandmachinelearningtechniquestoanalyzeandidentifylargepassengerflows,providingmetrooperatorswithvaluableinsightsanddecision-makingsupport. 1.Introduction: 1.1Background: Urbanmetrosystemsplayacriticalroleintransportationnetworks,offeringaconvenientandefficientmeansoftransportation.However,theincreasingpopulationdensityandurbanizationhaveledtoovercrowdingandlargepassengerflows,whichposechallengesformetrooperatorsintermsofpassengersafetyandsystemefficiency. 1.2ResearchObjectives: TheobjectiveofthisresearchistodevelopamethodfordetectingandanalyzinglargepassengerflowsintheNanjingmetrosystemusingAFCdata.Byidentifyingpatternsandcharacteristicsoflargepassengerflows,metrooperatorscanmakeinformeddecisionsforcrowdmanagementandresourceallocationtoensurepassengersafetyandsystemefficiency. 2.Methodology: 2.1DataCollection: TheAFCdatacollectedfromtheNanjingmetrosystemisutilizedastheprimarydatasetforanalysis.TheAFCdataincludesinformationsuchasentryandexittimestamp,stationID,andfarepaymentdetails. 2.2DataPreprocessing: ThecollectedAFCdataundergoespreprocessingstepssuchasdatacleaning,filtering,andaggregationtoremovenoiseandirrelevantinformation.Necessarytransformationsandfeatureengineeringtechniquesareappliedtoobtainmeaningfuldatarepresentations. 2.3FeatureSelection: Featureselectiontechniquesareemployedtoidentifythemostrelevantfeaturesthatcontributetothedetectionoflargepassengerflows.Statisticalanalysisandmachinelearningalgorithmsareusedtoevaluatetheimportanceofeachfeatureinpredictinglargepassengerflows. 2.4DataMiningAlgorithms: Variousdataminingalgorithms,suchasclustering,classification,andassociationrule