预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于协同进化云的属性集成多代理约简算法(英文) Title:AMulti-AgentAttributeReductionAlgorithmbasedonCollaborativeEvolutionaryCloud Abstract: Attributereductionisanimportanttaskinthefieldofdataminingandmachinelearning,whichaimstoremoveredundantandirrelevantattributeswhilepreservingasmuchinformationaspossible.Traditionalattributereductionalgorithmsoftensufferfromhighcomputationalcomplexityandlimitedscalability.Inthispaper,weproposeanovelmulti-agentattributereductionalgorithmbasedoncollaborativeevolutionarycloud.Thealgorithmleveragesthebenefitsofcloudcomputingandthecollectiveintelligenceofmultipleagentstoimprovetheefficiencyandeffectivenessofattributereduction.Experimentalresultsonbenchmarkdatasetsdemonstratethesuperiorityoftheproposedalgorithmcomparedtoexistingapproachesintermsofcomputationtimeandthequalityofthereducedattributes. 1.Introduction: Attributereductionplaysacrucialroleinmachinelearninganddataminingtasksasithelpsreducethedimensionalityofdatasetswhilemaintainingthesalientfeatures.Traditionalattributereductionalgorithmsoftenfacechallengesintermsofcomputationalcomplexityandscalability,especiallyforlarge-scaledatasets.Toaddresstheseissues,weproposeamulti-agentattributereductionalgorithmbasedoncollaborativeevolutionarycloud.Theproposedalgorithmharnessesthepowerofcloudcomputingtodistributethecomputationamongmultipleagents,therebyimprovingefficiencyandscalability. 2.RelatedWork: Inthissection,wereviewexistingattributereductionalgorithms,includingroughset-basedapproaches,geneticalgorithms,andinformationtheory-basedmethods.Weanalyzetheirstrengthsandlimitationsandhighlighttheneedforamoreefficientandscalableapproach. 3.CollaborativeEvolutionaryCloud: Weintroducetheconceptofcollaborativeevolutionarycloud,whichcombinestheadvantagesofcloudcomputingandevolutionaryalgorithms.Thecollaborativeevolutionarycloudallowsmultipleagentstoworkcollaborativelyusingdistributedcomputingresources,enablingfasterandmoreefficientattributereduction. 4.Multi-AgentAttributeReductionAlgorithm: Wepresentthedetailedstep