预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于XGBoost算法的异常用户识别(英文) Title:AnomalyUserDetectionbasedonXGBoostAlgorithm Abstract: Withtherapidgrowthofonlineplatformsanddigitalservices,theneedforearlyidentificationandmitigationofabnormaluserbehaviorshasbecomecrucialforensuringthesecurityandintegrityofthesesystems.ThispaperproposesanovelapproachforanomalyuserdetectionusingthepowerfulXGBoostalgorithm.XGBoostisapopularmachinelearningtechniqueknownforitsexceptionalperformanceinsolvingclassificationproblems,makingitwell-suitedforabnormaluseridentification.TheproposedapproachharnessesthepowerofXGBoosttoaccuratelyandefficientlydetectanomaliesinuserbehaviorpatterns,thusenhancingtheoverallsecurityofonlineplatforms. 1.Introduction Theemergenceofonlineplatformsanddigitalserviceshasrevolutionizedvariousindustriessuchase-commerce,healthcare,andfinance.However,thisincreasingrelianceondigitaltechnologyalsoexposestheseplatformstovarioussecuritythreats,includinganomaloususerbehaviorssuchasfraudulentactivities,spamming,ormaliciousintent.Detectingsuchanomaliesiscriticalforprotectingsystems,ensuringdataintegrity,andmaintainingusertrust.Inthispaper,weproposeamethodologyforidentifyingabnormaluserbehaviorsusingtheXGBoostalgorithm. 2.Background 2.1AnomalyDetection Anomalydetectionreferstotheprocessofidentifyingpatternsorinstancesthatsignificantlydeviatefromthenormalbehaviorofasystem.Traditionalapproachestoanomalydetectionincludestatisticaltechniques,clusteringalgorithms,andrule-basedmethods.However,thesemethodsoftenstrugglewithcomplexanddynamicdatasets,makingthemlesssuitableforhandlinglarge-scaleuserbehaviordata.Machinelearningalgorithmsofferapromisingsolutiontothisproblembyleveragingtheirabilitytoautomatepatternidentification. 2.2XGBoostAlgorithm XGBoostisanadvancedgradientboostingmachinelearningalgorithmthathasgainedsignificantpopularityduetoitsexcellentpredictiveperformanceandscalability.Itutilizesacombinationofdecisiontreestocreateanensemblemodelthatdeliversaccuratepredictionsonawiderangeofclassificationproblems.XGBoostoptimizesboth