预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于ANN伪量测建模的配电网状态估计 Title:PowerDistributionNetworkStateEstimationbasedonArtificialNeuralNetworkPseudo-MeasurementModeling Abstract: Withtheincreasingcomplexityofpowerdistributionnetworks,accurateandreal-timeestimationoftheirstateiscrucialforefficientoperationandmanagement.Traditionalstateestimationapproaches,suchastheKalmanfilterorweightedleastsquares,relyheavilyontheaccuracyofthemeasurementdata,whichmaynotalwaysbereadilyavailable.Inthispaper,weproposeanovelstateestimationmethodbasedontheutilizationofartificialneuralnetworks(ANN)intheformofpseudo-measurements.BytrainingtheANNmodelusinghistoricaldata,theproposedmethodcaneffectivelyestimatethestatevariablesofthepowerdistributionnetworkevenwhenunreliableorinsufficientmeasurementsarepresent.TheperformanceandeffectivenessoftheANN-basedstateestimationapproachareevaluatedthroughsimulationsonatestdistributionnetwork,demonstratingitssuperiorcapabilitycomparedtotraditionalmethods. Introduction: Powerdistributionnetworksplayacriticalroleindeliveringelectricityfromtransmissionsubstationstoendconsumers.Theaccurateestimationoftheirstatevariablesisessentialforoptimaloperation,faultdetection,andsystemcontrol.Stateestimationtechniqueshavebeenwidelyusedtoestimatethevoltagemagnitudesandanglesatthenetworkbusesbasedontheavailablemeasurements,suchasmeasurementsfromphasormeasurementunits(PMUs),supervisorycontrolanddataacquisition(SCADA)systems,andsmartmeters.However,thesemeasurementsaresubjecttovariousuncertaintiesandlimitations,makingitchallengingtoachieveaccuratestateestimationsolelybasedontheavailablemeasurements. Toovercometheselimitations,anovelapproachbasedonartificialneuralnetworks(ANN)isproposed.ANNmodelshaveshowngreatpotentialinsolvingcomplexproblems,includingelectricalpowersystemapplications.Inthiswork,anANNisutilizedtomodelpseudo-measurements,whichrepresenttherelationshipsbetweenavailablemeasurementsandstatevariables.BytrainingtheANNmodelusinghistoricaldata,theproposedmethodcanestimatethestatevariableseveninthepresenceofunreliab