预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于GP分布拟合检验的BPSKQPSK信号调制识别 Title:ModulationRecognitionofBPSKandQPSKSignalsusingGoodness-of-FitTestbasedonGaussianProcessDistribution Abstract: Modulationrecognitionplaysacrucialroleinvariouscommunicationsandsignalprocessingapplications.Inthispaper,weproposeanovelapproachtoidentifythemodulationtypeofBPSK(BinaryPhaseShiftKeying)andQPSK(QuadraturePhaseShiftKeying)signalsbasedonthegoodness-of-fittestusingtheGaussianProcess(GP)distribution.TheGPdistributioniscapableofmodelingthestatisticalcharacteristicsofvariousmodulationschemes,makingitanidealcandidateformodulationrecognitiontasks. Introduction: Modulationrecognitionistheprocessofidentifyingthemodulationschemeusedtotransmitinformationinacommunicationsystem.Withtherapiddevelopmentofwirelesscommunicationsystems,accurateandefficientmodulationrecognitionalgorithmsareessentialforreliableandrobustsignalprocessing.BPSKandQPSKarewidelyusedmodulationschemesindigitalcommunicationsystemsduetotheirsimplicityandspectralefficiency.Hence,developingarobustandaccuratemodulationrecognitiontechniquespecificallyforBPSKandQPSKsignalsisofgreatimportance. Methodology: Theproposedapproachutilizesthegoodness-of-fittestbasedontheGPdistributiontodistinguishbetweenBPSKandQPSKsignals.TheGPdistributionisaflexiblenonparametricdistributionmodelthatcancapturethestatisticalcharacteristicsofawiderangeofdata.ByfittingtheobservedsignaltotheGPdistribution,wecanassessthesimilaritybetweentheobservedsignalandtheexpectedsignaldistributionforeachmodulationscheme. 1.Preprocessing: Thereceivedsignalispreprocessedtoremovenoiseandunwantedinterference.Itinvolvesfiltering,demodulation,andsynchronizationprocessestoensureaccuratemodulationrecognition. 2.GaussianProcessModel: TheGPmodelistrainedusingknownBPSKandQPSKsignalstocapturetheirrespectivestatisticalcharacteristics.TheGPmodelisanon-parametricprobabilisticmodelthatcanadaptivelylearnandgeneralizefromatrainingdataset.Itallowsustoestimatetheunderlyingprobabilitydistributionfunctionofthesignal. 3.Goodness-of-FitTest: T