预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于CNN与关键区域特征的人脸表情识别算法 Title:FacialExpressionRecognitionAlgorithmbasedonCNNandKeyRegionFeatures Abstract: Facialexpressionrecognitionhasgainedsignificantattentioninrecentyearsduetoitswiderangeofapplicationsinvariousfields,includinghuman-computerinteraction,emotionanalysis,andsocialrobotics.Inthispaper,weproposeanovelfacialexpressionrecognitionalgorithmthatcombinesConvolutionalNeuralNetworks(CNNs)withkeyregionfeatures.Thealgorithmaimstoimprovetheaccuracyandrobustnessoffacialexpressionrecognitionbyfocusingonthemostrelevantregionsoftheface. Introduction: Facialexpressionsplayacrucialroleinhumancommunication,conveyingemotions,intentions,andattitudes.Recognizingfacialexpressionsautomaticallyhasbecomeachallengingtaskinthefieldofcomputervision.Variousmethodshavebeenproposedtoaddressthisproblem,withCNNsbeingwidelyemployedfortheirexceptionalperformanceinimageclassificationtasks.However,accuratelyrecognizingfacialexpressionsstillremainsachallengeduetovariationsinpose,illumination,occlusion,andindividualdifferences. Methodology: Ourproposedalgorithmconsistsoftwomainsteps:featureextractionandexpressionclassification.Inthefeatureextractionstep,aCNNisusedtoextractdeepfeaturesfromtheinputfacialimage.ThepretrainedCNNmodel,suchasVGGNetorResNet,isfine-tunedusingalargefacialexpressiondataset.Thesedeepfeaturescapturethehigh-levelrepresentationsoffacialexpressions. Inthesecondstep,weincorporatetheconceptofkeyregionfeatures.Ratherthanconsideringthewholeface,wefocusonthemostinformativeregionsforexpressionrecognition.Varioustechniquescanbeemployedtoidentifythesekeyregions,suchasfaciallandmarkdetection,facialactionunitanalysis,orsaliencymaps.Thesekeyregionsarethenextractedandusedasinputstoaseparateclassificationmodel,suchasSupportVectorMachines(SVM)orRandomForests,forexpressionclassification. ExperimentalResults: Weevaluatetheperformanceofourproposedalgorithmonseveralpubliclyavailablefacialexpressiondatabases,suchasCK+,JAFFE,andFER2013.Theresultsdemonstratethatouralgorithmoutperformsexisting