预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

云环境中基于海量签到数据的并行地点推荐算法研究 Title:ResearchonParallelLocationRecommendationAlgorithmbasedonMassiveCheck-inDatainCloudEnvironment Abstract: Therapidgrowthoflocation-basedsocialnetworksandtheavailabilityofmassivecheck-indatahaveledtoanincreasinginterestindevelopingeffectiveandefficientlocationrecommendationalgorithms.Thispaperfocusesontheresearchanddevelopmentofaparallellocationrecommendationalgorithmthattakesadvantageofthecloudenvironmentandleveragesmassivecheck-indata.Theproposedalgorithmaimstosolvetheproblemofrecommendingrelevantlocationstousersinascalableandtime-efficientmanner. 1.Introduction: Location-basedsocialnetworks(LBSNs)suchasFoursquareandYelphaverevolutionizedthewaypeoplediscoverandexplorenewplaces.Theseplatformsallowuserstocheck-inatvariouslocationsandsharetheirexperienceswithothers.Thevastamountofcheck-indataaccumulatedintheseplatformspresentsanopportunitytodevelopdata-drivenapproachesforlocationrecommendation.However,processingsuchlarge-scaledatainreal-timeposessignificantcomputationalchallenges,requiringtheexplorationofparallelcomputingtechniques. 2.LiteratureReview: Thissectionprovidesanoverviewofexistinglocationrecommendationalgorithmsandhighlightsthelimitationsoftraditionalapproaches.Furthermore,itsurveysparallelcomputingtechniquesandtheirapplicabilityinsolvingcomputationallyintensiveproblems,includinglocationrecommendation. 3.Methodology: Theproposedparallellocationrecommendationalgorithmconsistsofmultiplesteps,includingdatapreprocessing,featureextraction,similaritycalculation,andrecommendationgeneration.Eachstepisdesignedtobeparallelizableandscalableinthecloudenvironment.ThealgorithmutilizestechniquessuchasMapReduceandparalleldatabaseoperationstoprocessmassivecheck-indataefficiently. 4.DataPreprocessing: Tohandlethemassivecheck-indata,preprocessingtechniquesareappliedtofilterirrelevantdata,normalizetimestamps,andextractusefulinformationsuchasuserpreferences,locationcategories,andgeographicalfeatures. 5.FeatureExtraction: Thisstepaimstoextractinformat