预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种非迭代的位姿估计方法 Title:ANon-IterativeMethodforPoseEstimation Abstract: Poseestimation,thetaskofdeterminingthepositionandorientationofanobjectrelativetoareferenceframe,isafundamentalproblemincomputervisionandrobotics.Traditionalmethodsforposeestimationoftenrelyoniterativealgorithms,whichcanbecomputationallyexpensiveandsensitivetoinitialization.Inthispaper,weintroduceanon-iterativemethodforposeestimationthatprovidesaccurateresultswithreducedcomputationalcomplexity.Ourapproachcombinestheadvantagesoffeature-basedanddirectmethodsbydirectlysolvingthegeometricconstraintsoftheproblemwithoutiterativerefinements.Experimentalresultsdemonstratetheeffectivenessandefficiencyoftheproposedmethod,makingitaviablealternativeforreal-timeapplications. 1.Introduction: Poseestimationplaysacrucialroleinvariousapplicationssuchasroboticmanipulation,objecttracking,augmentedreality,andautonomousnavigation.Traditionalmethodstypicallyrelyoniterativeoptimizationalgorithms,suchastheiterativeclosestpoint(ICP)algorithm.However,thesemethodssufferfromseverallimitations,includingsensitivitytoinitialization,prematureconvergence,andhighcomputationalcomplexity.Inthispaper,wepresentanon-iterativemethodthatalleviatestheseissuesandprovidesaccurateposeestimationresults. 2.RelatedWork: Severalapproacheshavebeenproposedforposeestimation,includingfeature-basedmethods,directmethods,andhybridmethods.Feature-basedmethodsrelyondetectingandmatchingkeypointsontheobjectandtheimage,whiledirectmethodsoperatedirectlyonimageintensitiesorgradients.Iterativealgorithmsarethenusedtorefinetheinitialposeestimate.Incontrast,ournon-iterativemethoddoesnotrequireaniterativerefinementstep,leadingtoreducedcomputationalcomplexity. 3.Methodology: Ournon-iterativeposeestimationmethodcombinestheadvantagesoffeature-basedanddirectmethods.Westartbyextractingfeaturesfromtheobjectandtheimageusingarobustfeaturedetector,suchastheScale-InvariantFeatureTransform(SIFT)algorithm.Thesefeaturesarethenmatchedusingafeaturedescriptor,suchastheRandomSampleCon