预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种梯度正则化稀疏表示的图像超分辨率重建方法 Title:AGradientRegularizationSparseRepresentation-BasedImageSuper-ResolutionReconstructionMethod Abstract: Imagesuper-resolution(SR)istheprocessofenhancinglow-resolution(LR)imagestohigh-resolution(HR)images.Sparserepresentation-basedSRmethodshaveshownpromisingresultsinachievinghigh-qualityHRimages.Inthispaper,weproposeanovelSRmethodbyincorporatinggradientregularizationintosparserepresentation,aimingtoimprovethereconstructionperformanceofHRimages.Theproposedmethodeffectivelyexploitstheinherentstructureofimagesandenhancesthefinedetailswhileavoidingover-smoothingartifacts. 1.Introduction: Imagesuper-resolutionaimstoreconstructHRimagesfromdegradedLRimages.VariousSRmethodshavebeenproposedovertheyears,includinginterpolation-based,example-based,andlearning-basedapproaches.Sparserepresentationisoneofthelearning-basedmethodsthathasshowngreatpotentialintheSRtask.Byrepresentinganimagepatchasalinearcombinationofafewatomsfromadictionary,sparserepresentationcaneffectivelycapturetheintrinsicsparsityandstructureofnaturalimages.However,existingsparserepresentation-basedSRmethodsstillsufferfromlimitationsinreconstructingfinedetailsandpreservingthesmoothnessoftheHRimages. 2.RelatedWork: Thissectiondiscussestherelevantliteratureonsparserepresentation-basedSRmethods.Itcoversthefundamentalsofsparsecoding,dictionarylearning,andtheirapplicationsinimagesuper-resolution.Additionally,itexplorestheincorporationofgradientregularizationtechniquesinimageSRreconstructiontoaddressthelimitationsoftraditionalsparserepresentation-basedmethods. 3.ProposedMethod: Theproposedmethodintroducesanovelregularizationtermbasedonthegradientsoftheimagepatchtoenhancetheperformanceofsparserepresentation-basedSR.Byleveragingthegradientinformation,theproposedmethodencouragesthereconstructiontopreservetheedgesandtexturesoftheHRimages.Thedetailedformulationandoptimizationprocedureoftheproposedmethodaredescribedinthissection. 4.ExperimentalResults: Tovalidatetheeffectivenessoftheproposedmethod,ext