预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种使用协作预测的自组织网络故障检测方法(英文) ACollaborativePrediction-BasedSelf-OrganizingNetworkFaultDetectionMethod Abstract: Networkfaultdetectionandpreventionhavebecomeessentialintoday'shighlyinterconnectedandreliantdigitalsystems.Traditionalnetworkfaultdetectionmethodsoftenrelyoncentralizedmonitoringsystems,whichmaynotbeefficientandmaylackscalability.Inthispaper,weproposeacollaborativeprediction-basedself-organizingnetworkfaultdetectionmethod.Themethodcombinesthepowerofself-organizingnetworksandcollaborativepredictiontechniquestoachieveefficientandeffectivefaultdetection.Wepresentthearchitectureandworkingprincipleoftheproposedmethod,alongwithexperimentalresultstodemonstrateitsefficacy.Ourfindingsindicatethatthecollaborativeprediction-basedself-organizingnetworkfaultdetectionmethodoutperformstraditionalcentralizedmonitoringsystemsintermsoffaultdetectionaccuracy,efficiency,andscalability. 1.Introduction: Withtheincreasingcomplexityandinterconnectednessofmoderndigitalsystems,networkfaultdetectionhasbecomeacriticaltaskinensuringsystemstabilityandperformance.Traditionalfaultdetectionmethodsrelyoncentralizedmonitoringsystems,whichhavecertainlimitationsintermsofscalabilityandefficiency.Incontrast,self-organizingnetworksandcollaborativepredictiontechniquesofferpromisingsolutionstoovercometheselimitations.Self-organizingnetworksarecapableofadaptingandevolvingbasedonlocalinteractions,whilecollaborativepredictiontechniquesleveragethecollectiveintelligenceofanetwork. 2.RelatedWork: Variousfaultdetectionmethodshavebeenproposedintheliterature,includingrule-basedapproaches,statisticaltechniques,andmachinelearningalgorithms.However,mostofthesemethodssufferfromthelimitationsofcentralizedmonitoringsystems.Self-organizingnetworkshaveshownpromiseinfaultdetection,astheycanadapttochangingnetworkconditionsinadistributedmanner.Collaborativepredictiontechniqueshavealsobeensuccessfullyappliedinvariousdomains,suchasrecommendationsystemsandcrowdforecasting.However,tothebestofourknowledge,nopreviousworkhasexp