预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一类非线性抛物方程H~1-Galerkin混合有限元方法的高精度分析 Title:High-PrecisionAnalysisofH1-GalerkinMixedFiniteElementMethodforaClassofNonlinearParabolicEquations Abstract: Thenumericalsolutionofnonlinearparabolicequationsisofgreatimportanceinvariousfieldsofscienceandengineering.Inthispaper,wefocusonthehigh-precisionanalysisoftheH1-Galerkinmixedfiniteelementmethodforaspecificclassofnonlinearparabolicequations.TheH1-GalerkinmixedfiniteelementmethodcombinestheadvantagesoftheH1-Galerkinfiniteelementandmixedfiniteelementmethods,providingapowerfultoolforaccuratelyandefficientlyapproximatingthesolutionsofnonlinearparabolicequations.Wepresentadetaileddescriptionandanalysisofthemethod,highlightingitshigh-precisionproperties.Numericalexperimentsareconductedtovalidatethetheoreticalresultsanddemonstratethehighaccuracyofthemethod. Introduction: Nonlinearparabolicequationsarewidelyusedtomodelvariousphysicalphenomena,includingheatconduction,diffusion,andchemicalreactions.Solvingtheseequationsnumericallyplaysacrucialroleinapplicationssuchasheattransferinengineering,combustionmodeling,andpopulationdynamics.TheH1-Galerkinmixedfiniteelementmethodhasbeenproventobeaneffectiveandaccurateapproachforsolvingtheseequations.Thismethodnotonlyprovidesahighlevelofaccuracybutalsopreservesimportantphysicalpropertiesofthesolution,suchaspositivityandmonotonicity. Methodology: TheH1-Galerkinmixedfiniteelementmethodisbasedonavariationalformulation,wherethesolutionissoughtwithinasuitablefunctionspace.Themethodinvolvesdiscretizingthesolutionandthecorrespondingnumericalspaces,followedbyapproximatingtheweaksolutionusingshapefunctions.Thisprocessleadstoalinearsystemofequations,whichisthensolvedusingappropriatelinearalgebraictechniques.Weprovideadetailedtheoreticalanalysisofthemethod,provingtheapproximationpropertiesofthesolutionandestablishingthehigh-precisionnatureofthemethod. Results: TovalidatethetheoreticalresultsanddemonstratethehighaccuracyoftheH1-Galerkinmixedfiniteelementmethod,wepresentnumericalexperimentsonavarietyofte