预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

MassiveMIMO中基于统计信道的波束形成和功率分配 Title:StatisticalChannel-basedBeamformingandPowerAllocationinMassiveMIMO Abstract: MassiveMultiple-InputMultiple-Output(MIMO)hasemergedasapromisingtechnologyforenhancingthecapacityandspectralefficiencyofwirelesscommunicationsystems.OneofthekeychallengesinMassiveMIMOisthedesignofbeamformingandpowerallocationtechniquestoefficientlyutilizethelargenumberofantennasatthebasestation.Thispaperfocusesonstatisticalchannel-basedbeamformingandpowerallocation,whichleveragesthestatisticalcharacteristicsofthechanneltooptimizethesystemperformance.Theobjectiveistomaximizethesum-rateorminimizethepowerconsumptionwhilemaintainingatargetquality-of-service(QoS)attheusers.Variousstatisticalchannel-basedtechniques,includingbeamformingalgorithmsandpowerallocationstrategies,arereviewedandcomparedinthispaper. 1.Introduction MassiveMIMOisatechnologythatemploysalargenumberofantennasatthebasestationtoservemultipleuserssimultaneously.Byexploitingthespatialmultiplexinggain,MassiveMIMOcansignificantlyimprovethesystemcapacityandspectralefficiency.However,theefficientutilizationofthelargeantennaarraypresentsseveralchallenges,suchasexcessiveinteruserinterferenceandhighcomputationalcomplexity.Statisticalchannel-basedtechniquesprovideapracticalsolutionbyutilizingstatisticalpropertiesofthewirelesschannel. 2.StatisticalChannelModeling Thestatisticalmodelofthewirelesschannelplaysavitalroleinstatisticalchannel-basedbeamformingandpowerallocation.Thissectiondiscussesthecommonlyusedstatisticalmodels,includingtheKroneckerandKronecker-blockchannelmodels.Theadvantagesandlimitationsofthesemodelsarepresented,alongwiththemethodsforestimatingthestatisticalparameters. 3.StatisticalBeamformingAlgorithms Statisticalbeamformingalgorithmsexploitthestatisticalknowledgeofthechanneltodesignefficientbeamformingvectors.Theconventionalmethodofbeamformingbasedonthemaximumratiotransmission/combining(MRT/MRC)suffersfromhighcomplexityinMassiveMIMOsystems.Alternatively,statisticalbeamformingalgorithms,su