预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

SAM系统对TDCS数据的优化处理与深层应用 Title:OptimizationandDeepApplicationsofSAMSystemforTDCSData Introduction: Transcranialdirectcurrentstimulation(TDCS)isanon-invasivebrainstimulationtechniquethatmodulatescorticalexcitability,makingitapromisingtoolforcognitiveenhancement,neuropsychiatricdisorders,andrehabilitation.However,tofullyunleashthepotentialofTDCS,thereisaneedforadvanceddataprocessingtechniquesanddeepapplications.ThispaperaimstoexploretheoptimizationanddeepapplicationsoftheSAMsystemforTDCSdata. OptimizationoftheSAMSystemforTDCSData: TheSignalAnalysisandMapping(SAM)systemiswidelyusedinTDCSresearchforthecollectionandanalysisofbrainsignaldata.TooptimizetheSAMsystemforTDCSdata,severalaspectsneedtobeconsidered: 1.Noisereduction:TDCSsignalsareoftencontaminatedbyvarioussourcesofnoise,includingartifactsfromelectrodecontactsandphysiologicalnoise.Advancednoisereductiontechniques,suchasadaptivefilteringandsignalaveraging,canbeemployedtoimprovethequalityofthecollecteddata. 2.Featureselection:TDCSdataoftencontainalargenumberoffeatures,whichcanbechallengingforanalysisandinterpretation.Featureselectionalgorithms,suchasPrincipalComponentAnalysis(PCA)andRecursiveFeatureElimination(RFE),canbeutilizedtoidentifythemostinformativefeatures,reducingthecomputationalburdenandimprovingtheperformanceofsubsequentanalyses. 3.Calibrationandnormalization:TDCSdatacollectedfromdifferentindividualsmayvaryintermsofamplitudeandbaselinecharacteristics.Calibrationandnormalizationtechniques,suchasz-scorenormalizationandreferenceelectrodestandardizationtechniques(REST),canbeappliedtoensurethecomparabilityandreliabilityofTDCSdataacrosssubjectsandsessions. DeepApplicationsoftheSAMSystemforTDCSData: OncetheSAMsystemisoptimizedforTDCSdata,deepapplicationscanbeexploredtofacilitatedataanalysisandinterpretation: 1.Machinelearningalgorithms:TDCSdatacanbesubjectedtovariousmachinelearningalgorithms,suchassupportvectormachines(SVM),randomforests,anddeepneuralnetworks.ThesealgorithmscanbetrainedtoclassifyTDCSresponses,pred