预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

SOM图像分割算法在GPU上并行优化分析 Title:AnalysisofParallelOptimizationofSOMImageSegmentationAlgorithmonGPU Abstract: Imagesegmentationisafundamentaltaskincomputervisionwithnumerousapplications,suchasobjectdetection,tracking,andimagerecognition.TheSelf-OrganizingMap(SOM)algorithmhasbeenwidelyusedforimagesegmentationduetoitsabilitytopreservethetopologicalpropertiesoftheinputdata.However,withtheincreasingcomplexityandsizeofmodernimages,thecomputationaldemandoftheSOMalgorithmhasalsoincreased,resultinginsignificantexecutiontime.Toaddressthisissue,paralleloptimizationtechniquesonGraphicsProcessingUnits(GPUs)canbeemployedtoacceleratetheSOMalgorithm.ThispaperaimstoanalyzeanddiscusstheparalleloptimizationoftheSOMimagesegmentationalgorithmontheGPU,focusingonitsbenefits,challenges,andpotentialsolutions. 1.Introduction -BrieflyintroducetheimportanceofimagesegmentationandtheSOMalgorithminthefieldofcomputervision. -Highlighttheincreasingcomputationaldemandduetolargerandmorecompleximages. -IntroducetheconceptofparalleloptimizationonGPUsasapromisingsolution. 2.OverviewoftheSOMImageSegmentationAlgorithm -ExplainthebasicprinciplesoftheSOMalgorithm,includingdatarepresentationandthelearningprocess. -DiscusstheadvantagesandlimitationsoftheSOMalgorithminimagesegmentation. -DescribethesequentialimplementationoftheSOMalgorithm. 3.ParallelOptimizationTechniquesonGPUs -ProvideanoverviewofGPUarchitectureanditssuitabilityforparallelcomputing. -IntroduceGPUprogrammingmodels,suchasCUDAandOpenCL. -DiscussthebenefitsofparallelizingtheSOMalgorithmontheGPU,includingimprovedperformanceandscalability. 4.ChallengesinParallelizingtheSOMAlgorithmonGPUs -AddressthechallengesassociatedwithparalleloptimizationoftheSOMalgorithmontheGPU. -Discussdatadependenciesandtheirimpactonparallelization. -Explainloadbalancing,memoryaccesspatterns,andcommunicationoverhead. 5.ParallelOptimizationStrategies -PresentvariousparalleloptimizationstrategiesfortheSOMalgorithmontheGPU. -Discussthedatapartitioningtechniquesaimedatminimizingdat