预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

Ensemble-SISPLS近红外光谱变量选择方法 Abstract: Ensemble-SISPLS(SequentialImportanceSamplingPartialLeastSquares)isafeatureselectionmethodthatcombinesEnsembleLearningandPartialLeastSquares(PLS)regressionfornear-infrared(NIR)spectraldata.Inthispaper,weintroducetheEnsemble-SISPLSmethodandpresentitsapplicationinNIRvariableselection.WecompareEnsemble-SISPLSwithotherwidelyusedvariableselectionmethods,anddemonstrateitseffectivenessinimprovingpredictionperformanceandreducingmodelcomplexity.Furthermore,wediscusstheadvantagesandlimitationsofEnsemble-SISPLS,andproviderecommendationsforitsfuturedevelopmentandapplication. 1.Introduction Near-infraredspectroscopyisapowerfulanalyticaltechniquethathasbeenwidelyusedinvariousfields,suchaspharmaceuticals,foodscience,agriculture,andenvironmentalmonitoring.However,NIRspectraldataoftencontainalargenumberofirrelevantandnoisyvariables,whichcancauseoverfittingandhindertheinterpretationofthemodels.VariableselectionisanimportantpreprocessingstepinNIRdataanalysis,whichaimstoidentifythemostrelevantvariablesthatcontributetotheprediction. 2.Ensemble-SISPLSMethodology TheEnsemble-SISPLSmethodcombinestheadvantagesofEnsembleLearningandPartialLeastSquaresregression.EnsembleLearningisamachinelearningtechniquethatcombinesmultiplemodelstoimprovepredictionaccuracyandstability.PartialLeastSquaresregressionisaregressionmethodthattakesintoaccounttheunderlyingstructurebetweenthevariablesandtheresponsevariable.InEnsemble-SISPLS,multiplePLSmodelsarebuiltusingbootstrappedsamples,andtheimportancescoresofthevariablesarecalculatedbasedontheircontributiontotheensemblepredictions. 3.ApplicationofEnsemble-SISPLSinNIRVariableSelection WecomparedEnsemble-SISPLSwithothercommonlyusedvariableselectionmethods,includingUnivariateSelection,RecursiveFeatureElimination,andGeneticAlgorithm.WeusedadatasetofNIRspectraandcorrespondingchemicalcompositionstoevaluatetheperformanceofthesemethods.TheresultsshowedthatEnsemble-SISPLSoutperformedtheothermethodsintermsofpredictionaccuracyandmodelsimp