预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

【典型例题】 类型一:利用二次函数求实际问题中的最大(小)值 1.某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y1(元)与销售月份x(月)满足关系式,而其每千克成本(元)与销售月份x(月)满足的函数关系如图所示. (1)试确定b,c的值; (2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(不要求指出x的取值范围) (3)“五一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少? 1.(利润问题)某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量(件)与销售单价(元)的关系可以近似的看作一次函数(如图). (1)求与之间的函数关系式; (2)设公司获得的总利润为元,求与之间的函数关系式,并写出自变量的取值范围;根据题意判断:当取何值时,的值最大?最大值是多少?(总利润总销售额总成本) 类型二、建立平面直角坐标系,利用二次函数解决抛物线形的实际问题 2.(2014秋•涿州市校级月考)某工厂大门是抛物线形水泥建筑,大门地面宽为4m,顶部距离地面的高度为4.4m,现有一辆满载货物的汽车欲通大门,其装货宽度为2.4m,该车要想过此门,装货后的最大高度应是多少m? 【思路点拨】 因为校门是抛物线形,不妨将这一问题转化为二次函数进行研究,建立适当的直角坐标系,将已知数据转化为点的坐标,从而确定函数关系式,再根据关系式求高. 2.如图所示,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮筐,已知篮筐中心到地面的距离为3.05m,若该运动员身高1.8m,在这次跳投中,球在头顶上方0.25m处出手,问:球出手时,他跳离地面的高度是多少? 类型三、利用二次函数求图形的边长、面积等问题 3.一条隧道的截面如图所示,它的上部是一个以AD为直径的半圆O,下部是一个矩形ABCD. (1)当AD=4米时,求隧道截面上部半圆O的面积; (2)已知矩形ABCD相邻两边之和为8米,半圆O的半径为r米. ①求隧道截面的面积S(m)2关于半径r(m)的函数关系式(不要求写出r的取值范围); ②若2米≤CD≤3米,利用函数图象求隧道截面的面积S的最大值.(π取3.14,结果精确到0.1米) 3.如图,矩形纸片ABCD,AD=8,AB=10,点F在AB上,分别以AF、FB为边裁出的两个小正方形纸片面积和S的取值范围是多少?