预览加载中,请您耐心等待几秒...
1/8
2/8
3/8
4/8
5/8
6/8
7/8
8/8

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高考资源网(),您身边的高考专家 欢迎广大教师踊跃来稿,稿酬丰厚。 用心爱心专心 高考资源网(),您身边的高考专家 欢迎广大教师踊跃来稿,稿酬丰厚。 2011走向高考系列物理一轮复习配套练习--磁场对运动电荷的作用 一、选择题 1.(2009·泰州模拟)“月球勘探者号”空间探测器运用高科技手段对月球进行了近距离勘探,在月球重力分布、磁场分布及元素测定方面取得了新的成果.月球上的磁场极其微弱,通过探测器拍摄电子在月球磁场中的运动轨迹,可分析月球磁场的强弱分布情况,如图是探测器通过月球表面①、②、③、④四个位置时,拍摄到的电子运动轨迹照片(尺寸比例相同),设电子速率相同,且与磁场方向垂直,则可知磁场从强到弱的位置排列正确的是 () A.①②③④B.①④②③ C.④③②① D.③④②① [答案]A [解析]由图可知带电粒子做圆周运动的半径r1<r2<r3<r4,根据带电粒子在匀强磁场中轨道半径公式r=eq\f(mv,qB)可得:B1>B2>B3>B4,故选项A正确. 2.(2009·南通模拟)在赤道处,将一小球向东水平抛出,落地点为a;给小球带上电荷后,仍以原来的速度抛出,考虑地磁场的影响,下列说法正确的是 () A.无论小球带何种电荷,小球仍会落在a点 B.无论小球带何种电荷,小球下落时间都会延长 C.若小球带负电荷,小球会落在更远的b点 D.若小球带正电荷,小球会落在更远的b点 [答案]D [解析]从南向北观察小球的运动轨迹如图所示,如果小球带正电荷,则洛伦兹力斜向右上,该洛伦兹力竖直向上和水平向右均有分力,因此,小球落地时间会变长,水平位移会变大;同理,若小球带负电,则小球落地时间会变短,水平位移会变短,故选项D正确. 3.真空中两根长直金属导线平行放置,其中一根导线中通有恒定电流.在两导线所确定的平面内,一电子从P点运动的轨迹的一部分如图中的曲线PQ所示,则一定是() A.ab导线中通有从a到b方向的电流 B.ab导线中通有从b到a方向的电流 C.cd导线中通有从c到d方向的电流 D.cd导线中通有从d到c方向的电流 [答案]C [解析]注意观察图象的细节,靠近导线cd处,电子的偏转程度大,说明靠近cd处运动的半径小,洛伦兹力提供电子偏转的向心力,Bqv=eq\f(mv2,r),B=eq\f(mv,qr).由于电子速率不变,偏转半径变小,说明B变强,一定是cd导线中通有电流,再由左手定则判出安培力的大致方向是偏向左方.最后利用安培定则判断出cd中电流方向应由c到d,所以正确答案是C. 4.如图,在x>0、y>0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向里,大小为B.现有一质量为m、电荷量为q的带正电粒子,在x轴上到原点的距离为x0的P点,以平行于y轴的初速度射入此磁场,在磁场作用下沿垂直于y轴的方向射出此磁场.不计重力的影响.由这些条件可知 () A.不能确定粒子通过y轴时的位置 B.不能确定粒子速度的大小 C.不能确定粒子在磁场中运动所经历的时间 D.以上三个判断都不对 [答案]D [解析]带电粒子以平行于y轴的初速度射入此磁场,在磁场作用下沿垂直于y轴的方向射出此磁场,故粒子在磁场中运动了eq\f(1,4)周期,从y轴上距O为x0处射出,v=eq\f(qBx0,m),回旋角为90°. 5.如图所示,MN为两个匀强磁场的分界面,两磁场的磁感应强度大小的关系为B1=2B2,一带电荷量为+q、质量为m的粒子从O点垂直MN进入磁感应强度为B1的磁场,则经过多长时间它将向下再一次通过O点 () A.eq\f(2πm,qB1) B.eq\f(2πm,qB2) C.eq\f(2πm,q(B1+B2)) D.eq\f(πm,q(B1+B2)) [答案]B [解析]粒子在磁场中的运动轨迹如右图所示.由周期公式T=eq\f(2πm,qB)知,粒子从O点进入磁场到再一次通过O点的时间t=eq\f(2πm,qB1)+eq\f(πm,qB2)=eq\f(2πm,qB2),所以B选项正确. 6.(2009·福建泉州质检)如图是某粒子速度选择器的示意图.在一半径为R=10cm的圆柱形桶内有B=10-4T的匀强磁场,方向平行于轴线,在圆柱桶某一直径的两端开有小孔,作为入射孔和出射孔.粒子束以不同角度入射,最后有不同速度的粒子束射出.现有一粒子源发射比荷为eq\f(q,m)=2×1011C/kg的阳离子,粒子束中速度分布连续.当角θ=45°时,出射粒子速度v的大小是 () A.eq\r(2)×106m/s B.2eq\r(2)×