预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

螺旋锥齿轮齿顶线数学建模方法(英文) MathematicalModelingApproachforHelicalConeGearToothTopLine Introduction Helicalgearhasbecomeoneofthemostimportantmechanismsforpowertransmission.Itiswidelyusedinvariousindustrialapplicationsduetoitsadvantagessuchashighefficiency,highloadcapacity,andlownoise.Thehelicalconegearisaspecialtypeofhelicalgearthatisusedtotransmitpowerbetweennon-intersectingshaftswithananglebetweenthem.Thehelicalconegearsarecommonlyusedinsteeringsystemsofvehiclesandmachines,andtheyarealsousedinaircraftengines.Thetoothtoplineisacriticalfeatureofagear,asitaffectsthegear’sperformance,loadcarryingcapacity,noise,andvibration.Therefore,itisimportanttounderstandthemathematicalmodelingapproachforhelicalconegeartoothtopline. MathematicalModelingApproachforHelicalConeGearToothTopLine Themathematicalmodelingapproachforhelicalconegeartoothtoplineinvolvesusingmathematicalequationstodeterminetheshapeandsizeofthegearteeth.Theshapeofthegearteethisdeterminedbytheinvolutecurve,whichisacurvemadebyapointonastringasitisunwoundfromacylinder.Theinvolutecurveisacommonlyusedcurveingeartoothdesignbecauseitensuresthatthegearsrolloneachothersmoothly.Thesizeofthegearteethisdeterminedbythemodule,whichistheratioofthepitchdiametertothenumberofteeth. Thegeartoothtoplineforhelicalconegearscanbeobtainedusingthefollowingmathematicalequations: -HelixAngle:Thehelixangleistheangleofthetoothtoplinewithrespecttotheaxialplaneofthegear.Itisgivenbytheequation: λ=tan-1(sinα/cosβ) whereαistheconeangle,andβisthepressureangle. -PitchDiameter:Thepitchdiameteristhediameterofthepitchcircle.Itisgivenbytheequation: D=mZ/cosα wheremisthemodule,andZisthenumberofteeth. -NormalDistance:Thenormaldistanceisthedistancebetweenthetoothtoplineandthepitchcircle.Itisgivenbytheequation: h=m(cosα/cosβ) -BaseCircleDiameter:Thebasecirclediameteristhediameterofthebasecircle.Itisgivenbytheequation: Db=Dcosα -ToothProfile:Thetoothprofileisdeterminedbytheinvolutecurve.Itisgivenbytheequation: r=(D/2+h)cosφ whereristhedistancefromthecenterofthegea