预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共62页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

时间序列的平稳性及其检验经典回归分析的假设之一:解释变量X是非随机变量 放宽该假设:X是随机变量,则需进一步要求: (1)X与随机扰动项不相关∶Cov(X,)=0 (2)依概率收敛:表现在:两个本来没有任何因果关系的变量,却有很高的相关性(有较高的R2)。例如:如果有两列时间序列数据表现出一致的变化趋势(非平稳的),即使它们没有任何有意义的关系,但进行回归也可表现出较高的可决系数。 在现实经济生活中,实际的时间序列数据往往是非平稳的,而且主要的经济变量如消费、收入、价格往往表现为一致的上升或下降。这样,仍然通过经典的因果关系模型进行分析,一般不会得到有意义的结果。二、时间序列数据的平稳性例1.一个最简单的随机时间序列是一具有零均值同方差的独立分布序列: Xt=t,t~N(0,2)例2.另一个简单的随机时间列序被称为随机游走(randomwalk),该序列由如下随机过程生成: Xt=Xt-1+t 这里,t是一个白噪声。X1=X0+1 X2=X1+2=X0+1+2 …… Xt=X0+1+2+…+t 由于X0为常数,t是一个白噪声,因此:Var(Xt)=t2 即Xt的方差与时间t有关而非常数,它是一非平稳序列。然而,对X取一阶差分(firstdifference): Xt=Xt-Xt-1=t 由于t是一个白噪声,则序列{Xt}是平稳的。事实上,随机游走过程是下面我们称之为1阶自回归AR(1)过程的特例:Xt=Xt-1+t 不难验证: 1)||>1时,该随机过程生成的时间序列是发散的,表现为持续上升(>1)或持续下降(<-1),因此是非平稳的; 2)=1时,是一个随机游走过程,也是非平稳的。 事实上可以证明:只有当-1<<1时,该随机过程才是平稳的给出一个随机时间序列,首先可通过该序列的时间路径图来粗略地判断它是否是平稳的。 一个平稳的时间序列在图形上往往表现出一种围绕其均值不断波动的过程。 而非平稳序列则往往表现出在不同的时间段具有不同的均值(如持续上升或持续下降)。进一步的判断:检验样本自相关函数及其图形一个时间序列的样本自相关函数定义为:可检验对所有k>0,自相关系数都为0的联合假设,这可通过如下QLB统计量进行:容易验证:该样本序列的均值为0,方差为0.0789。从QLB统计量的计算值看,滞后17期的计算值为26.38,未超过5%显著性水平的临界值27.58,因此,可以接受所有的自相关系数k(k>0)都为0的假设。 因此,该随机过程是一个平稳过程。序列Random2是由一随机游走过程 Xt=Xt-1+t 生成的一随机游走时间序列样本。其中,t是由Random1表示的白噪声。图形表示出:该序列具有相同的均值,但从样本自相关图看,虽然自相关系数迅速下降到0,但随着时间的推移,则在0附近波动且呈发散趋势。 从QLB统计量的计算值看,滞后1期的计算值为5.116,超过5%显著性水平的临界值3.84,因此,拒绝自相关系数k(k>0)都为0的假设。 该随机游走序列是非平稳的。例检验中国支出法GDP时间序列的平稳性。图形:表现出了一个持续上升的过程,可初步判断是非平稳的。 样本自相关系数:缓慢下降,再次表明它的非平稳性。(*)式可变形式成差分形式: Xt=(-1)Xt-1+t =Xt-1+t(**) 检验(*)式是否存在单位根=1,也可通过(**)式判断是否有=0。可证明,(*)式中的参数>1或=1时,时间序列是非平稳的;对应于(**)式,则是>0或=0。上述检验可通过OLS法下的t检验完成。 然而,在零假设(序列非平稳)下,即使在大样本下t统计量也是有偏误的(向下偏倚),通常的t检验无法使用。 Dicky和Fuller于1976年提出了这一情形下t统计量服从的分布(这时的t统计量称为统计量),即DF分布(见表9.1.3)。 由于t统计量的向下偏倚性,它呈现围绕小于零值的偏态分布。因此,可通过OLS法估计: Xt=+Xt-1+t 并计算t统计量的值,与DF分布表中给定显著性水平下的临界值比较:如果:t<临界值,则拒绝零假设H0:=0, 认为时间序列不存在单位根,是平稳的。 注意:在不同的教科书上有不同的描述,但是结果是相同的。 例如:“如果计算得到的t统计量的绝对值大于临界值的绝对值,则拒绝ρ=0”的假设,原序列不存在单位根,为平稳序列。问题的提出: 在利用Xt=+Xt-1+t对时间序列进行平稳性检验中,实际上假定了时间序列是由具有白噪声随机误差项的一阶自回归过程AR(1)生成的。 但在实际检验中,时间序列可能由更高阶的自回归过程生成的,或者随机误差项并非是白噪声,这样用OLS法进行估计均会表现出随机误差项出现自相关(autocorrel