预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共41页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第三章多元统计分析多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法。在采用多元统计分析进行数据处理、建立宏观或微观系统模型时,主要研究以下几个方面的问题: 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子集合,从子集合所包含的信息描述多变量的系统结果及各个因子对系统的影响。 构造预测模型,进行预报控制。探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类,以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。如何选择适当的方法来解决实际问题?需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。 例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、偏最小二乘回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子集合;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。一、回归分析(一)线性回归(一)线性回归(二)逐步回归分析(二)逐步回归分析(二)逐步回归分析(三)二次多项式回归分析(四)趋势面分析(四)趋势面分析(四)趋势面分析(四)趋势面分析(五)聚类分析(五)聚类分析(五)聚类分析(五)聚类分析(五)聚类分析(五)聚类分析(五)聚类分析(五)聚类分析(五)聚类分析(五)聚类分析(六)判别分析(六)判别分析(六)判别分析(六)判别分析(六)判别分析(六)判别分析(六)判别分析(六)判别分析(六)判别分析(六)判别分析(七)多因子分析(七)多因子分析(七)多因子分析(七)多因子分析(七)多因子分析(七)多因子分析王宏富(1962-),男,山西晋城人,教授,硕士生导师,作物栽培与耕作学系主任。中国耕作制度研究会理事,山西省质量技术监督局农业标准专家组成员,山西省作物学会理事。1984年毕业于山西农业大学,后留校任教,主要从事作物化控与逆境生理、农田杂草与防除、计算机在农业中的应用、农业结构调整等方面的教学与研究工作,为博士、硕士和本专科生主讲《旱地农业专题》、《高级耕作学》、《农业传播技术与应用》、《农学概论》、《计算机在农业中的应用》、《杂草学》、《水土保持农学》、《无公害农产品生产技术》等课程。主持和参加国家“948”项目、教育部项目、省攻关项目、省自然基金项目、省开发项目与教学项目等多项,获省级研究成果一等奖1项、二等奖4项、三等奖1项;国家级出版社出版专著1部、21世纪教材1部(副主编)、国家统编教材1部(副主编)、十一五教材1部(副主编)、参编十一五教材1部,在国内外专业刊物上发表了学术论文30余篇。