预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

旋翼螺旋桨的快速气动优化设计(英文) Title:FastAerodynamicOptimizationDesignofRotorBlades Abstract: Rotorbladesofhelicoptersareacriticalcomponentthatsignificantlyaffectstheoverallperformanceandefficiencyoftheaircraft.Afastandefficientaerodynamicoptimizationdesignprocessforrotorbladesisessentialtoimproveflightcharacteristics,reducevibrations,andincreasefuelefficiency.Inthispaper,weexplorevariousmethodsandtechniquesthatcanbeemployedforquickeraerodynamicoptimizationofrotorblades. Introduction: Helicoptersrelyonrotorbladestogenerateliftandpropulsion,makingthedesignoftherotorbladescrucialforsafeandefficientflight.Traditionalmethodsofrotorbladedesignaretime-consumingandmaynotprovideoptimalsolutions.Therefore,thereisaneedforfastaerodynamicoptimizationdesignapproachesforrotorbladestominimizedesigniterationanddevelopmenttime. I.DesignExploration: 1.Parameterization:Rotorbladedesignscanbedescribedusingvariousparameterizationmethods,suchascamberlines,airfoilshapes,twistdistribution,andbladethickness.Theseparametersdeterminetheshapeandperformanceoftherotorblades. 2.ComputationalFluidDynamics(CFD)Simulations:CFDplaysavitalroleinevaluatingrotorbladeperformance.ByusingCFDsimulations,wecanquicklyassessdifferentdesignconfigurationstopredictlift,drag,andotheraerodynamiccharacteristics. 3.DesignofExperiments(DOE):DOEtechniques,suchasLatinhypercubesamplingandresponsesurfacemethodology,canbeusedtoefficientlyexplorethedesignspacebyrunningalimitednumberofsimulationcases.Thisenablestheidentificationofcriticaldesignparametersandtheirrespectiveinfluenceonperformance. II.OptimizationTechniques: 1.GeneticAlgorithms(GA):GAisanevolutionaryoptimizationalgorithminspiredbynaturalselection.Itcanefficientlysearchforoptimalrotorbladedesignsbygeneratingapopulationofpossiblesolutionsanditerativelyimprovingthembasedonfitnesscriteria. 2.Surrogate-BasedOptimization(SBO):SBOinvolvesconstructingsurrogatemodelsfromtheCFDsimulationdatatoreplacecomputationalexpensiveevaluations.Thesesurrogatemodelscanthenbeusedinoptimizationalgo