预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

多特征融合和交叉核SVM的车辆检测方法 Abstract Vehicledetectionisasignificantresearchproblemincomputervision.Inthispaper,weproposeanovelmethodforvehicledetectionusingmulti-featurefusionandcross-kernelSVM.OurproposedmethodistestedontheCaltech-USAdataset,andtheresultsshowthatitoutperformsstate-of-the-artmethodsinvehicledetectionaccuracy,precision,andrecall. Introduction Vehicledetectionisacriticalproblemincomputervisionasithasnumerouspracticalapplicationsinthefieldsoftrafficmanagement,surveillance,andautonomousdriving,etc.Thefundamentaltaskofavehicledetectionsystemistoidentifyvehiclesfromagivenimageoravideo.Thechallengeinvehicledetectionisthatvehiclescanhavevarioussizes,shapes,andorientations,andcanbeobscuredbyotherobjectsorpartiallyoccluded.Inthispaper,weproposeanovelmethodforvehicledetectionthatusesmulti-featurefusionandcross-kernelSVM. RelatedWorks Manytechniqueshavebeenusedforvehicledetection,withvaryingdegreesofsuccess.Somepopulartechniquesincludetemplatematching,Haarcascades,feature-basedmethods,andmachinelearning-basedmethods.Templatematchingsimplycomparesanimagepatchwithatemplaterepresentingavehicle.Thismethodcanbeveryaccurate,butitisonlyusefulfordetectingvehicleswithaspecificshapeandorientation.Haarcascadesuseasetofhaar-likefeaturestodetectobjectsofdifferentshapesandsizes.Thismethodiscomputationallyefficientbuthasloweraccuracy.Feature-basedmethodsusehand-craftedorlearnedfeaturesextractedfromtheimagetodetectvehicles.Thesemethodsperformreasonablywell,buttheymaynotberobusttochangesintheappearanceofvehicles.Machinelearning-basedmethodstrainadetectorusingasetoflabeledimages.Thesemethodscanbeveryaccuratebutrequirelargeamountsoflabeleddataandmaygeneralizepoorlytounseendata. ProposedMethod Inourproposedmethod,weusemulti-featurefusionandcross-kernelSVMtoimprovetheaccuracyandrobustnessofvehicledetection.Weusefourdifferentfeatures,includingHOG,LBP,SIFT,andColorHistogram,tocapturevariousvisualinformationintheimage.Sincedifferentfeaturesaresensitivetovariousaspectsoftheimage,usingallfourfe