预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于等周理论的自动多级阈值分割方法(英文) Title:AutomatedMultilevelThresholdingSegmentationMethodbasedonOtsu'sTheory Abstract: Imagesegmentationplaysacrucialroleinnumerouscomputervisiontasks,suchasobjectdetection,imagerecognition,andmedicalimageanalysis.Theprocessinvolvesdividinganimageintoseveraldistinctregions,whichsimplifiessubsequentanalysisandextractionofvaluableinformation.Multilevelthresholdingsegmentationmethodshavegainedpopularityduetotheirabilitytohandlereal-worldimageswithcomplexbackgroundsandvaryingintensitylevels.Thispaperproposesanautomatedmultilevelthresholdingsegmentationmethodbasedonthewell-knownOtsu'stheory. Introduction: Imagesegmentationconsistsofdividinganimageintomultipleregions,inwhichpixelssharesimilarcharacteristics.Multilevelthresholding,apopularapproachtoimagesegmentation,aimstodivideanimageintomorethantworegionsbasedonmultiplethresholdvalues,asopposedtotraditionalbinarysegmentationmethods.Inthisstudy,weproposeanautomatedmultilevelthresholdingsegmentationmethod,whichutilizesOtsu'stheoryasafoundation. Otsu'sTheory: Otsu'stheory,originallyproposedbyNobuyukiOtsuin1979,isawidelyusedautomaticthresholdselectionmethod.Itmaximizesthebetween-classvarianceofanimagetodetermineanoptimalthresholdvalueforbinarysegmentation.However,applyingOtsu'smethoddirectlytomultilevelthresholdingcanbechallengingduetotheincreasedcomplexity.Thus,ourmethodaimstoextendOtsu'stheoryformultilevelthresholdingsegmentation. Methodology: 1.Preprocessing:Theinputimageundergoespreprocessingstepssuchasnoiseremoval,contrastenhancement,andnormalizationtoensureaccuratesegmentationresults. 2.HistogramCalculation:Thehistogramofthepreprocessedimageiscomputedtoobtainstatisticalinformationabouttheintensitydistribution. 3.ThresholdInitialization:Initialthresholdvaluesaresetbasedontheintensityhistogram. 4.IterativeThresholdRefinement:ThethresholdvaluesarerefinediterativelyusingtheprinciplesofOtsu'stheory.Ateachiteration,theregionvariancesarecalculated,andthethresholdvaluesareupdatedtomaximizethebetween-classva