预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于组合模型的雷达故障预测分析(英文) Introduction Radarsystemsplayacrucialroleinmodernmilitaryandcivilapplications.Thesesystemsrelyoncomplextechnologiestooperatesuccessfully,andtheyencountervariouschallengesindifferentenvironments,suchasharshweatherconditionsorelectronicinterference.Faultsinradarsystemscancausesignificantdelayindetectingandtrackingtargets,andthereforedegradetheiroverallperformance.Toavoidsuchnegativeimpacts,radarsystemmaintenanceisessential,anditcanbeperformedbasedonpredictiveanalysis.Inthispaper,weproposeacombinationmodelforradarfaultpredictionanalysisthathelpsmaintenancepersonneldetectfaultsbeforetheyhappen. LiteratureReview Manystudieshavebeenconductedtopredictradarfaults.Oneofthetechniquesusedisthewaveletnetworkmodel.Inthismodel,thesignalisdecomposedintofrequencysubbandsusingthewavelettransform,thenaneuralnetworkisusedtopredictthefaultsbasedonthesubbands.Thewaveletnetworkmodelhasshowngoodperformanceinfaultpredictioninradarsystems(Gaoetal.,2004).Otherstudieshaveproposedaneuralnetworkmodelbasedontheechocharacteristicstopredictradarfaults(Liuetal.,2011;Lietal.,2015).Thesemodelshavealsodemonstratedgoodpredictionperformance. However,thesetechniqueshavelimitationsintermsofpredictionaccuracy.Theycannotcapturethecomplexinteractionsamongdifferentfactorsthatcancauseradarfaults.Inresponsetothislimitation,theproposedcombinationmodelintegratesmultipleapproachestoimprovethepredictionaccuracy. Methodology Theproposedcombinationmodelconsistsofthreestages:datapreprocessing,featureextraction,andfaultprediction. Datapreprocessingisanessentialsteptoeliminateirrelevantorredundantdatathatmayimpedethepredictionaccuracy.Inthisstage,therawdatacollectedfromtheradarsystemispreprocessedusingfilterstoremovenoiseandotherirrelevantsignals.Then,time-domainandfrequency-domainfeaturesareextractedfromthepreprocesseddata. Featureextractionistheprocessofselectingtherelevantfeaturesthataffecttheradar’sperformanceandcanbeusedtopredictfaults.Inthisstage,afeatureselectionalgorithmisusedtoextractthemost