预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于能量有效的水下分布式粒子滤波跟踪算法 Introduction: Underwatertrackingisacrucialtechnologyinvariousapplications,suchasoceanographicresearch,marinebiology,underwatercommunication,andautonomousunderwatervehicles(AUVs).Theparticlefilteralgorithmisoneofthemostpopularapproachesforunderwatertrackingduetoitsrobustnessandflexibility.However,theconventionalparticlefilteralgorithmhasseverallimitationsinunderwaterenvironments,suchasthehighdimensionalityofthestatespace,nonlinearmotionmodel,andmeasurementnoise. Toovercometheselimitations,researchershaveproposeddifferentmethods,includingthedistributedparticlefilteralgorithm.Unliketheconventionalparticlefilteralgorithm,thedistributedparticlefilteralgorithmdividesthestatespaceintoseveralsmallersubspacesandperformstheparticlefilteringalgorithmindependentlyineachsubspace.Thisapproachreducesthecomputationalcomplexityandimprovesthetrackingperformanceinunderwaterenvironments.However,thedistributedparticlefilteralgorithmstillhaslimitations,suchasthecommunicationcostandenergyconsumption. Inthispaper,weproposeanenergy-efficientunderwaterdistributedparticlefiltertrackingalgorithmthatreducesthecommunicationoverheadandenergyconsumptionwhilemaintainingthetrackingperformance. Methodology: Theproposedalgorithmcomprisestwomaincomponents:thedistributedparticlefilteralgorithmandtheenergy-efficientstrategy.Thedistributedparticlefilteralgorithmdividesthestatespaceintoseveralsubspacesandperformstheparticlefilteringalgorithmindependentlyineachsubspace.Theenergy-efficientstrategyreducesthecommunicationoverheadandenergyconsumptionbyoptimizingthesamplingstrategyandparticleweightupdate. Thesamplingstrategyoptimizesthesamplesizeandthedistributionoftheparticlesineachsubspace.Weusetheadaptivesamplingtechniquetoadjustthesamplesizeanddistributionbasedonthetrackingperformance.Thistechniquereducesthenumberofparticlesrequiredtoachievehighaccuracyandimprovestheenergyefficiencyofthealgorithm. Theparticleweightupdatestrategyoptimizestheweightupdateprocessbasedonthemeasurementnoiseand