预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于改进的小波阈值的电能质量信号去噪 摘要: 电能质量信号中含有噪声,降低了信号的准确性和可靠性,因此信号去噪是电子技术领域中的重要问题。为此,本文提出了一种基于改进的小波阈值的电能质量信号去噪方法,该方法结合了小波分析和阈值去噪算法。通过对实验数据的处理,本文证明了该方法的有效性。 关键词:电能质量信号、小波阈值、去噪、改进。 Introduction: Electricpowerqualitysignalreferstothewaveformdistortions,harmonics,interferences,interruptions,voltagedrops,andfrequencyfluctuations.Theseproblemsnotonlyendangerthestabilityandreliabilityofthepowergridbutalsocausesignificanteconomiclosses.Therefore,itiscrucialtomonitorandcontrolthepowerqualitysignaltoensurestableandreliablepowersupply.However,thepowerqualitysignalisoftencomplexandcontainsasignificantamountofnoise,whichseverelyaffectssignalanalysisandprocessing.Therefore,signaldenoisingisacriticalissueinpowerelectronics. Wavelettransformisawidelyusedsignalanalysistoolinthefieldofpowerquality.Itcaneffectivelydecomposeasignalintomultiplefrequencybandsandhasexcellenttime-frequencylocalizationproperties.Thethresholdingmethodiscommonlyusedinwavelet-basedsignaldenoising,whichdividesthewaveletcoefficientsintosignalandnoisecomponentsbasedonapredefinedthresholdvalue.Thethresholdingmethodcaneffectivelysuppressnoisewhilepreservingsignalfeatures,butitalsoleadstothelossofusefulsignalcomponents. Inthispaper,weproposeanimprovedwaveletthreshold-baseddenoisingmethodforpowerqualitysignals.Thismethodcombineswaveletanalysisandthresholdingdenoisingalgorithm.First,thepowerqualitysignalisdecomposedintoseveralfrequencybandsusingthewavelettransform.Then,animprovedthresholdingmethodisusedtocalculatethethresholdvalueadaptivelyforeachfrequencyband.Finally,thedenoisedsignalisreconstructedbytheinversewavelettransform. Experimentalresultsshowtheeffectivenessoftheproposedmethodinsuppressingnoiseandpreservingusefulsignalcomponents.Comparedwithothermethods,theproposedmethodhashighersignal-to-noiseratio(SNR)andlowermeansquareerror(MSE)forpowerqualitysignals. Conclusion: Inthispaper,weproposedanimprovedwaveletthreshold-baseddenoisingmethodforpowerqualitysignals.Theproposedmethodcombineswaveletanalysisandthresholdingdenoisinga