基于改进Faster RCNN的化纤丝缺陷检测.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于改进Faster RCNN的化纤丝缺陷检测.docx
基于改进FasterRCNN的化纤丝缺陷检测标题:基于改进FasterR-CNN的化纤丝缺陷检测摘要:随着纺织行业的发展,化纤丝作为纺织原料的重要组成部分,其质量问题对纺织品的成品质量和市场竞争力有着重要影响。因此,针对化纤丝的缺陷检测问题,本文提出了一种基于改进FasterR-CNN的方法。首先,对FasterR-CNN进行了改进,引入了注意力机制和密集卷积网络。然后,通过大规模的化纤丝缺陷数据集进行了实验验证,结果表明,所提出的方法在化纤丝缺陷检测方面具有较高的准确率和鲁棒性。1.引言纺织行业是全球经
基于改进的Faster RCNN碳纤维编织物缺陷检测.pptx
汇报人:/目录0102FasterRCNN算法原理FasterRCNN在缺陷检测中的应用FasterRCNN的优势与局限性03算法改进方案改进后算法的原理及流程改进后算法的优势分析04数据集准备实验环境配置模型训练与测试实验结果分析05评估指标与标准检测结果展示与其他算法的对比分析实际应用场景的可行性分析06研究成果总结未来研究方向汇报人:
基于改进的Faster RCNN的行人检测方法.pdf
本发明公开了基于改进的FasterRCNN的行人检测方法,首先通过ResNet‑50神经网络提取样本图像的特征图,然后将所得特征图输入RPN模型,并修改了RPN模型的边框回归损失函数,生成候选框;最后将特征图和候选框发送到ROIHead模型,得到目标的类别和定位。本发明基于CNN特征,不仅可以处理任意尺度的图像,而且检测精度较高。相比已公开发明专利,本发明所公开的方法并不需要对网络进行特殊的设计,只需修改RPN模型的边框回归损失函数,充分利用了已有的可用数据,采用通用的网络结构仍旧可以达到不错的实验效
基于改进Faster RCNN的目标检测算法.pptx
汇报人:CONTENTS添加章节标题FasterRCNN算法概述FasterRCNN算法的原理和流程优势:a.速度快:FasterRCNN算法采用了RPN网络,可以快速生成候选框,提高了检测速度。b.准确率高:FasterRCNN算法采用了卷积神经网络,可以提取出更准确的特征,提高了检测准确率。c.适应性强:FasterRCNN算法可以应用于各种目标检测任务,具有较强的适应性。a.速度快:FasterRCNN算法采用了RPN网络,可以快速生成候选框,提高了检测速度。b.准确率高:FasterRCNN算法采
基于改进Faster RCNN与Grabcut的商品图像检测.docx
基于改进FasterRCNN与Grabcut的商品图像检测商品图像检测一直是计算机视觉领域的研究热点之一。在基于深度学习的方法中,FasterRCNN是一种非常经典和有效的目标检测算法,而Grabcut则是一种常用的图像分割算法。本文将基于改进的FasterRCNN和Grabcut算法提出一种商品图像检测方法,以提高商品检测的准确性和效率。首先,我们简要介绍一下FasterRCNN算法的基本原理。FasterRCNN是一种两阶段目标检测算法,它由两个主要组件组成:RegionProposalNetwork