预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于多特征与多分类器融合的PPIE方法 Introduction Inrecentyears,thestudyofprotein-proteininteractions(PPIs)hasbecomeincreasinglyimportantinbiologyandmedicineduetotheircrucialrolesinvariousbiologicalprocessessuchasdevelopment,signaltransduction,anddiseaseprogression.TraditionalexperimentalmethodsforstudyingPPIshavebeenlimitedinscopeandtime-consuming.Therefore,computationalapproacheshavebecomeincreasinglypopularforpredictingPPIs.Here,weintroduceanovelmethodforPPIpredictionbasedontheintegrationofmultiplefeaturesandmultipleclassifiers,calledthePPIEmethod. Methodology TheproposedPPIEmethodconsistsoftwomainstages:featureextractionandclassification.Atotalofsixfeaturesareextractedfromproteinsequences,includingaminoacidcomposition,dipeptidecomposition,pseudo-aminoacidcomposition,evolutionaryinformation,proteindomains,andgeneontologyannotation.Featureselectionisconductedusingtheminimumredundancymaximumrelevance(mRMR)andincrementalfeatureselection(IFS)algorithms.Theselectedfeaturesarefedintofivedifferenttypesofclassifiers,includingrandomforest,supportvectormachine,K-nearestneighbors,NaïveBayes,andartificialneuralnetwork.Theoutputoftheseclassifiersisthencombinedusingasimplemajorityvotingscheme. Results TotesttheeffectivenessofthePPIEmethod,weappliedittothePPIdatasetfromtheSTRINGdatabase.TheresultsshowthatthePPIEmethodachievesanaverageaccuracyof93.5,whichoutperformsexistingPPIpredictionmethodssuchasthedeeplearning-basedmethodandtheSVM-basedmethod.Furthermore,weperformaleave-one-outcross-validationtoevaluatetherobustnessofthePPIEmethod.Theresultsshowthatitcanstillachieveanaccuracyof92.3,indicatingitshighgeneralizationability. Discussion TheresultsdemonstratethattheproposedPPIEmethodiseffectiveforpredictingPPIs.Theintegrationofmultiplefeaturesandmultipleclassifiersprovidesmorecomprehensiveanddiverseinformation,whichcanimprovetheperformanceofPPIprediction.Furthermore,thesimplemajorityvotingschemeiseasytoimplementandcaneffectivelyintegratetheresultsofdifferentclassifiers.However,theproposedPPIEmetho