预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于VMD改进算法的气体管道泄漏检测 Title:AnImprovedGasPipelineLeakageDetectionAlgorithmbasedonVMD Abstract: ThispaperproposesanimprovedgaspipelineleakagedetectionalgorithmbasedontheVariationalModeDecomposition(VMD)method.Gaspipelineleakagespresentasignificantthreattopublicsafetyandtheenvironment.Detectingleakagesingaspipelinesiscrucialtopreventaccidentsandminimizethenegativeimpact.TheVMDalgorithmhasshownpromiseinsignalanalysisandfeatureextraction.However,ithaslimitationswhenappliedtogaspipelineleakagedetectionduetothecomplexandnon-stationarynatureofleakagesignals.Inthisstudy,weaddresstheselimitationsbymodifyingtheVMDalgorithmandintroducingadditionaltechniquesforaccurateleakagedetection. 1.Introduction: 1.1Background: Gaspipelineleakagesnotonlyposeasafetyriskbutalsoresultinenvironmentalpollutionandeconomiclosses.Thus,thedevelopmentofeffectiveandefficientdetectionalgorithmsisessential. 1.2Objective: TheobjectiveofthisstudyistoproposeanimprovedgaspipelineleakagedetectionalgorithmbyenhancingthecapabilitiesoftheVMDmethod. 2.Methodology: 2.1VMDBasics: ProvideabriefexplanationoftheVMDalgorithm,includingthedecompositionprocessanditsadvantages. 2.2LimitationsofVMDinGasPipelineLeakageDetection: DiscussthechallengesthatarisewhenapplyingVMDtogaspipelineleakagedetection,suchasnon-stationaryandcomplexsignals. 2.3ProposedAlgorithm: IntroducetheimprovementsmadetotheVMDalgorithmforgaspipelineleakagedetection.Thismayincludepreprocessingtechniques,featureextractionmethods,andclassificationalgorithms. 3.ExperimentalSetup: Explaintheexperimentalsetupusedtovalidatetheproposedalgorithm.Thisinvolvescollectingreal-lifegaspipelineleakagedataandcomparingtheperformanceoftheimprovedalgorithmwithexistingmethods. 4.ResultsandDiscussion: Presenttheresultsobtainedfromtheexperimentsanddiscusstheperformanceevaluationoftheproposedalgorithm.Compareitsaccuracy,sensitivity,andspecificitywithotherexistingalgorithms. 5.Conclusion: Summarizethekeyfindingsofthestudy,emphasizingtheeffectivenessoftheproposedimprovedalgorithmf