预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于并行卡尔曼滤波的车辆环境感知方法 Title:VehicleEnvironmentalPerceptionMethodbasedonParallelKalmanFiltering Abstract: Inrecentyears,thedevelopmentofautonomousvehicleshasgainedsignificantattentionduetothepotentialforenhancingroadsafetyandefficiency.However,oneofthekeychallengesfacedbyautonomousvehiclesisreliableenvironmentalperception.ThispaperproposesavehicleenvironmentalperceptionmethodbasedonparallelKalmanfiltering.Themethodutilizesmultiplesensorsandparallelfilteringtoestimatethestateofthevehicle'ssurroundingsaccurately.Experimentalresultsdemonstratetheeffectivenessandsuperiorityoftheproposedmethodinvariousreal-worldscenarios. 1.Introduction Withtherapidadvancementinsensortechnologyandcomputingpower,autonomousvehicleshavebecomeasignificantareaofresearchanddevelopment.Sensingthesurroundingenvironmentaccuratelyisvitalforautonomousvehiclestomakeinformeddecisionsandensuresafety.Environmentalperceptioninvolvesthedetection,tracking,andidentificationofvariousobjects,includingothervehicles,pedestrians,andobstacles.Kalmanfiltering,awidelyusedrecursiveBayesianfilter,hasshownpromisingresultsinstateestimationandobjecttracking.However,traditionalKalmanfilteringmethodshavelimitationsinhandlingcomplexanddynamicenvironments.ThispaperproposesanovelmethodthatleveragesparallelKalmanfilteringtoaddresstheselimitationsandimprovetheaccuracyandrobustnessofvehicleenvironmentalperception. 2.VehicleEnvironmentalPerceptionSystemOverview Theproposedsystemconsistsofmultiplesensors,includingcameras,LiDAR,radar,andonboardsensors,suchasGPSandIMU,mountedonthevehicle.Thesesensorscollectdatafromthesurroundingenvironment,whichisfusedandprocessedusingparallelKalmanfilteringforaccuratestateestimation.Thesystemutilizesamulti-objecttrackingframeworktotrackandidentifyobjectsinreal-time,providingacomprehensiveunderstandingofthevehicle'ssurroundings. 3.ParallelKalmanFiltering TraditionalKalmanfilteringreliesonasinglefiltertoestimatethestateofasystem.However,incomplexenvironments,asinglefiltermaystruggletocapturethedynamics