预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种改进的可变步长LMS算法及性能分析 Abstract: TheLeastMeanSquare(LMS)algorithmisapopularadaptivealgorithmusedinvariousapplicationssuchassignalprocessing,controlsystems,andcommunicationsystems.OneofthemainlimitationsoftheconventionalLMSalgorithmisthefixedstepsizerequirement,whichaffectsthestabilityandconvergencerateofthealgorithm.Inthispaper,weproposeanimprovedvariablestepsizeLMSalgorithmthatovercomestheselimitations.WecomparetheperformanceoftheproposedalgorithmwiththeconventionalLMSalgorithm,andthesimulationresultsshowthattheproposedalgorithmprovidesbetterconvergenceandstability. Introduction: AdaptiveFiltersarewidelyusedinvariousapplicationssuchassignalprocessing,controlsystems,andcommunicationsystems.OneofthepopularadaptivealgorithmsusedintheseapplicationsistheLMSalgorithm.TheLMSalgorithmisagradient-basedalgorithmthatiterativelyadjuststheweightsofthefiltertominimizethemeansquareerrorbetweentheoutputandthedesiredsignal. TheconventionalLMSalgorithmhasafixedstepsize,whichaffectstheconvergencerateandstabilityofthealgorithm.ThefixedstepsizerequirementlimitstheapplicabilityoftheLMSalgorithminreal-timeapplicationswheretheinputsignalsmaybedynamicandtime-varying. Toaddresstheselimitations,weproposeanimprovedvariablestepsizeLMSalgorithmthatadjuststhestepsizeofthealgorithmaccordingtotheinputsignalcharacteristics.Inthispaper,wepresentthemathematicalderivationoftheproposedalgorithmandcompareitsperformancewiththeconventionalLMSalgorithmusingsimulationresults. VariableStepSizeLMSAlgorithm: TheproposedvariablestepsizeLMSalgorithmisbasedontheideaofadjustingthestepsizeofthealgorithmaccordingtotheinputsignalcharacteristics.Thestepsizeiscalculatedasfollows: μ(n)=μ/(α+𝑥(n)2) Whereμistheinitialstepsize,αisaconstant,𝑥(n)istheinputsignalattimen. Theaboveequationshowsthatthestepsizewillbelargerwhentheinputsignalissmallandsmallerwhentheinputsignalislarge.Thishelpsinimprovingtheconvergencerateandstabilityofthealgorithm. Theupdateequationoftheproposedalgorithmisasfollows: W(n+1)=W(n)+μ(n)𝑒(n)𝑥(n) WhereW(n)i