预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种基于最大似然的SOQPSK联合估计优化算法 Title:AMaximumLikelihood-BasedJointEstimationOptimizationAlgorithmforSOQPSK Abstract: Theaimofthispaperistoproposeamaximumlikelihood-basedjointestimationoptimizationalgorithmforSerial-OrthogonalQuadraturePhaseShiftKeying(SOQPSK).SOQPSKisadigitalmodulationschemewidelyusedinwirelesscommunicationsystemsduetoitshighspectralefficiencyandrobustnessagainstfadingchannels.TheproposedalgorithmimprovestheaccuracyofchannelestimationandsymbolrecoveryinSOQPSKsignals,enablingbettersystemperformance. 1.Introduction SOQPSKisapopularmodulationschemethatisoftenusedincommunicationsystemsoperatinginbandwidth-constrainedscenarios.Itexhibitssuperiorperformanceintermsofbiterrorrate(BER)andisrobustagainstmultipathfadingandinterference.However,accurateestimationofthechannelparametersandsymbolrecoveryisessentialforachievingoptimalsystemperformance. 2.ChannelEstimationinSOQPSK Thefirststepinthejointestimationoptimizationalgorithmistheestimationofthechannelparameters.Themaximumlikelihood(ML)criterionisusedtoestimatethechanneltaps.Byformulatingtheproblemasalikelihoodmaximizationproblem,thealgorithmiterativelyadjuststhechannelparameterstomaximizethelikelihoodfunction. 3.JointSymbolRecoveryinSOQPSK Afterchannelestimation,thejointsymbolrecoveryalgorithmaimstojointlyestimatethetransmittedsymbols.Thisisanoptimizationproblembecausethereceivedsymbolsareaffectedbychannelimpairments,noise,andinterference.TheproposedalgorithmusestheMLcriteriontoiterativelyestimatethephaseandamplitudeofthetransmittedsymbolsbasedonthereceivedsymbols. 4.PerformanceEvaluation Simulationsandperformanceevaluationareconductedtoassesstheperformanceoftheproposedalgorithm.Severalmetricssuchasbiterrorrate(BER),signal-to-noiseratio(SNR),andspectralefficiencyareconsideredtoevaluatetheperformance.Theresultsarecomparedwithexistingalgorithms,demonstratingthesuperiorityoftheproposedalgorithmintermsofaccuracyandsystemperformance. 5.Discussion ThealgorithmpresentedinthispaperoffersseveraladvantagesoverexistingSOQPSKe