预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种快速的固体核径迹图像分割方法 Title:ARapidApproachforSolidParticleTrajectoryImageSegmentation Abstract: Particletrajectoryimagingplaysasignificantroleindiversescientificandindustrialfields,includingfluidmechanics,medicaldiagnosis,andmaterialanalysis.Efficientlysegmentingparticletrajectoriesfromcompleximagedataisachallengingtaskduetothepresenceofnoise,occlusions,andvariationsinparticleshapeandsize.Thispaperproposesarapidapproachforsolidparticletrajectoryimagesegmentation,aimedatachievingaccurateandreliableresultsinatime-efficientmanner.Theproposedmethodleveragestheadvantagesofbothtraditionalimageprocessingtechniquesandmoderndeeplearningalgorithms,offeringarobustsolutionforawiderangeofparticletrajectoryimagingapplications. 1.Introduction Particletrajectoryimagingallowsresearchersandengineerstotrackthemovementofsolidparticlesinvariousenvironments.Accuratesegmentationofparticletrajectoriesiscriticalforgainingvaluableinsightsintofluiddynamics,identifyingabnormalitiesinmedicalimages,andcharacterizingmaterialbehavior.Traditionalmanualsegmentationmethodsaretime-consumingandsubjective,necessitatingthedevelopmentofautomatedandefficienttechniques.Thispaperpresentsafastandreliableapproachforsegmentingparticletrajectories,addressingthelimitationsofexistingmethods. 2.Methodology 2.1Pre-processing Theproposedapproachstartswithpre-processingstepstoenhancethequalityoftheinputimages.Thisincludesnoisereduction,contrastadjustment,andimagenormalizationtechniques.Backgroundsubtractionmethodsareemployedtoeliminateirrelevantinformationandenhancethevisibilityofparticletrajectories. 2.2Segmentation Thesegmentationsteputilizesbothtraditionalimageprocessingtechniquesanddeeplearningalgorithms.Initially,athreshold-basedsegmentationtechniqueisappliedtoseparateparticlesfromthebackground.However,duetovariationsinparticleshapeandsize,thistechniquealonemayresultininaccuracies.Totacklethischallenge,aConvolutionalNeuralNetwork(CNN)istrainedusingannotatedparticletrajectoryimages.TheCNNcaneffectivelylearnthevisualfea