预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

WRF模式对江苏如东地区风速预报的检验分析 Title:VerificationandAnalysisofWindSpeedForecastusingWRFModelinRudongArea,JiangsuProvince Abstract: Accuratewindspeedforecastingiscrucialforvarioussectors,includingenergygeneration,transportation,andagriculture.Inthisstudy,weevaluatetheperformanceoftheWeatherResearchandForecasting(WRF)modelinpredictingwindspeedsinRudong,JiangsuProvince,China.TheWRFmodeliswidelyusedinweatherpredictionduetoitsabilitytosimulatelocalatmosphericprocesses.Verificationandanalysisofwindspeedforecastsareconductedusingstatisticalmetricsandgraphicalcomparisonswithobservations. 1.Introduction Windenergyisanimportantrenewableenergysource,andaccuratewindspeedforecastsareessentialforitseffectiveutilization.Theavailabilityofaccurateandreliablewindspeedforecastsallowsforoptimalplanningandoperationsinwindfarms.TheWRFmodelhasbeenextensivelyusedinwindspeedforecastingduetoitsexcellentperformanceinsimulatingatmosphericprocesses.However,itisessentialtoverifyandassessthemodel'sperformancetoensureitsreliabilityforspecificregions. 2.DataandMethodology ThestudyutilizesobservationalwindspeeddatafrommeteorologicalstationsintheRudongarea.ThesimulationdataareobtainedfromtheWRFmodel,whichisrunonahigh-performancecomputingsystem.Themodelisconfiguredusinghigh-resolutionterrainandland-usedataforaccuraterepresentationoflocalatmosphericprocesses.Statisticalmetricssuchasrootmeansquareerror(RMSE),meanabsoluteerror(MAE),andcorrelationcoefficient(r)areemployedforperformanceevaluation.Graphicalcomparisonsofobservedandpredictedwindspeedsarealsoconducted. 3.ResultsandDiscussion Thestatisticalevaluationmetricsarecalculatedfordifferentleadtimesofforecast,rangingfromshort-termtolong-termforecasts.TheRMSE,MAE,andrvaluesareanalyzedtodeterminethemodel'sskillinpredictingwindspeedsinvariousforecastintervals.TheresultsrevealthattheWRFmodelperformswellinshort-termforecastsupto24hours,withahighcorrelationcoefficientandlowerrorvalues.However,astheforecastleadtimeincreasesbeyond24hours,themodel'sperformanceslightlydet