预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2D-CSiC拉伸损伤的声发射信号聚类分析 Title:ClusterAnalysisofAcousticEmissionSignalsfor2D-CSiCTensileDamageAssessment Abstract: Inrecentyears,2Dcarbon-siliconcarbide(2D-CSiC)compositeshavegainedsignificantattentionduetotheirremarkablemechanicalpropertiesandpotentialapplicationsinhigh-performancestructures.However,assessingtheintegrityanddamageevolutionof2D-CSiCmaterialsischallenging,primarilyduetothecomplexandheterogeneousnatureoftheirmicrostructure.Inthisstudy,weproposeanovelapproachtoanalyzetheacousticemission(AE)signalsgeneratedduringtensileloadingof2D-CSiCcompositesusingclusteranalysistechniques.Theobjectiveistoenhancetheunderstandingofthedamagemechanismandenablereliablereal-timestructuralhealthmonitoringof2D-CSiCmaterials. Introduction: Thedevelopmentofadvancedmaterialswithimprovedmechanicalpropertiesanddamagetoleranceiscrucialforthecontinuedadvancementofaerospace,automotive,andenergyindustries.Amongthesematerials,2D-CSiCcompositeshaveemergedaspromisingcandidates,offeringhighstrength,stiffness,andthermalstability.Acousticemission(AE)monitoringhasproventobeaneffectivenon-destructivetestingmethodforassessingthestructuralintegrityofvariousmaterials.Inthisstudy,weinvestigatetheapplicationofAEanalysisincharacterizingthedamageevolvementin2D-CSiCcompositessubjectedtotensileloading. Methodology: Theexperimentalprocedureincludesthefabricationof2D-CSiCcompositesandsubsequenttensiletesting.Duringthetensileloading,AEsignalsarecontinuouslymonitoredandrecorded,capturingtheoccurrenceofmicrocracks,fiber/matrixinterfacedebonding,andotherdamagemechanisms.TheAEsignalsarethenpreprocessedtoremovenoiseandspurioussignals.Next,featureextractiontechniquesareappliedtoobtainasetofquantitativefeaturesfromtheAEsignals,representingtheirfundamentalcharacteristics. ClusterAnalysis: ClusteranalysisisemployedtogroupsimilarAEsignalsinordertoidentifydifferentstagesofdamageevolution.VariousclusteringalgorithmssuchasK-means,hierarchicalclustering,anddensity-basedspatialclusteringofapplicationswithnoise(DBSCAN)areu