预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

苹果图像识别的深度神经网络算法研究 Title:ResearchonDeepNeuralNetworkAlgorithmsforAppleImageRecognition Introduction: Withtherapidadvancementsindeeplearning,imagerecognitionhasbecomeapopularresearcharea,withvariousapplicationsinfieldssuchasautonomousvehicles,surveillancesystems,andmedicalimaging.Thispaperaimstoexploretheuseofdeepneuralnetworkalgorithmsforappleimagerecognition,whichhaspracticalsignificanceinagriculturalmanagementandqualitycontrol. 1.Background: Thecultivationandproductionofapplesarecrucialintheagriculturalindustry.Ensuringqualitycontrolisessentialformaintainingconsumerconfidenceandoptimizingcropyields.Traditionalmethodsofappleinspectionandsortingarelabor-intensiveandtime-consuming.Therefore,thedevelopmentofanefficientandaccurateappleimagerecognitionsystemusingdeeplearningtechniquescangreatlyimproveproductivityandreducecosts. 2.LiteratureReview: Thissectionpresentsanoverviewoftherelevantresearchconductedondeepneuralnetworkalgorithmsforimagerecognition.Itdiscussestheevolutionofdeeplearningmodels,suchasconvolutionalneuralnetworks(CNNs)andrecurrentneuralnetworks(RNNs),andtheirapplicationinvariousimagerecognitiontasks.Additionally,ithighlightsstudiesrelatedtofruitimagerecognitionandexaminesthechallengesspecifictoappleimagerecognition. 3.Methodology: Thissectiondescribestheproposedmethodologyforappleimagerecognitionusingdeepneuralnetworks.Itdiscussesthedatacollectionprocess,includingtheacquisitionandannotationofadiverseappleimagedataset.Variouspre-processingtechniques,suchasimageresizing,normalization,andaugmentation,arealsoconsidered.Acomprehensivereviewofdeepneuralnetworkarchitecturessuitableforappleimagerecognition,includingCNN-basedmodelssuchasVGGNet,ResNet,andInception,isprovided.Additionally,thetrainingprocess,hyperparameterselection,andperformanceevaluationmetricsarediscussed. 4.ExperimentalResults: Thissectionpresentstheexperimentalsetup,includinghardwareandsoftwarespecifications,andtheevaluationoftheproposedappleimagerecognitionsystem.Theperformanceofdifferentdeepn